
SYBEX Supplement

Mastering™ Delphi™ 5
by Marco Cantù

Chapter 22: Graphics in Delphi

Screen reproductions produced with Collage Complete.
Collage Complete is a trademark of Inner Media Inc.

SYBEX, Network Press, and the Network Press logo are registered trademarks of SYBEX Inc.
Mastering, Expert Guide, Developer’s Handbook, and No experience required. are trademarks of SYBEX Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape Navigator are trademarks of
Netscape Communications Corporation.

Microsoft® Internet Explorer ©1996 Microsoft Corporation. All rights reserved. Microsoft, the Microsoft Internet Explorer logo,
Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release soft-
ware whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufac-
turer(s). The author and the publisher make no representation or warranties of any kind with regard to the completeness or
accuracy of the contents herein and accept no liability of any kind including but not limited to performance, merchantability,
fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly
from this book.

Photographs and illustrations used in this book have been downloaded from publicly accessible file archives and are used in
this book for news reportage purposes only to demonstrate the variety of graphics resources available via electronic access.
Text and images available over the Internet may be subject to copyright and other rights owned by third parties. Online avail-
ability of text and images does not imply that they may be reused without the permission of rights holders, although the
Copyright Act does permit certain unauthorized reuse as fair use under 17 U.S.C. Section 107.

Copyright ©1999 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this pub-
lication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

http://www.sybex.com

http://www.sybex.com

C H A P T E R
T W E N T Y - T W O

Graphics in Delphi

� Painting on a form

� Animated buttons

� An image viewer

� Drawing over a bitmap

� Graphical grids and games

� Using TeeChart

� Windows metafiles

22

http://www.sybex.com

4

In Chapter 6 of Mastering Delphi 5, I introduced the Canvas object, Windows
painting process, and the OnPaint event. In this bonus chapter, I’m going to start
from this point and continue covering graphics, following a number of different
directions. (For all the code discussed here and in Mastering Delphi 5, check the
Sybex Web site.)

I’ll start with the development of a complex program to demonstrate how the
Windows painting model works. Then I’ll focus on some graphical components,
such as graphical buttons and grids. During this part of the chapter we’ll also add
some animation to the controls.

Finally, this chapter will discuss the use of bitmaps, covering some advanced
features for fast graphics rendering, metafiles, the TeeChart component (including
its use on the Web), and few more topics related to the overall issue of graphics.

Drawing on a Form
In Chapter 6, we saw that it is possible to paint directly on the surface of a form in
response to a mouse event. To see this behavior, simply create a new form with
the following OnMouseDown event handler:

procedure TForm1.FormMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
Canvas.Ellipse (X-10, Y-10, X+10, Y+10);

end;

The program seems to work fairly well, but it doesn’t. Every click produces a new
circle, but if you minimize the form, they’ll all go away. Even if you cover a por-
tion of your form with another window, the shapes behind that other form will
disappear, and you might end up with partially painted circles.

As I detailed in Chapter 6, this direct drawing is not automatically supported by
Windows. The standard approach is to store the painting request in the OnMouse-
Down event and then reproduce the output in the OnPaint event. This event, in fact,
is called by the system every time the form requires repainting. However, you’ll
need to force its activation by calling the Invalidate or Repaint methods in the
mouse-event handler. In other words, Windows knows when the form has to be
repainted because of a system operation (such as placing another window in front
of your form), but your program must notify the system when painting is required
because of user input or other program operations.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

5

The Drawing Tools
All the output operations in Windows take place using objects of the TCanvas
class. The output operations usually don’t specify colors and similar elements but
use the current drawing tools of the canvas. Here is a list of these drawing tools
(or GDI objects, from the Graphics Device Interface, which is one of the Windows
system libraries):

• The Brush property determines the color of the enclosed surfaces. The
brush is used to fill closed shapes, such as circles or rectangles. The proper-
ties of a brush are Color, Style, and optionally, Bitmap.

• The Pen property determines the color and size of the lines and of the borders
of the shapes. The properties of a pen are Color, Width, and Style, which
includes several dotted and dashed lines (available only if the Width is 1
pixel). Another relevant subproperty of the Pen is the Mode property, which
indicates how the color of the pen modifies the color of the drawing surface.
The default is simply to use the pen color (with the pmCopy style), but it is also
possible to merge the two colors in many different ways and to reverse the
current color of the drawing surface.

• The Font property determines the font used to write text in the form, using
the TextOut method of the canvas. A font has a Name, Size, Style, Color,
and so on.

TIP Experienced Windows programmers should note that a Delphi canvas technically
represents a Windows device context. The methods of the TCanvas class are simi-
lar to the GDI functions of the Windows API. You can call extra GDI methods by
using the Handle property of the canvas, which is a handle of an HDC type.

Colors
Brushes, pens, and fonts (as well as forms and most other components) have a
Color property. However, to change the color of an element properly, using non-
standard colors (such as the color constants in Delphi), you should know how
Windows treats the color. In theory, Windows uses 24-bit RGB colors. This means
you can use 256 different values for each of the three basic colors (red, green, and
blue), obtaining 16 million different shades.

However, you or your users might have a video adapter that cannot display
such a variety of colors, although this is increasingly less frequent. In this case,
Windows either uses a technique called dithering, which basically consists of

Drawing on a Form

http://www.sybex.com

6

using a number of pixels of the available colors to simulate the requested one; or
it approximates the color, using the nearest available match. For the color of a
brush (and the background color of a form, which is actually based on a brush),
Windows uses the dithering technique; for the color of a pen or font, it uses the
nearest available color.

In terms of pens, you can read (but not change) the current pen position with
the PenPos property of the canvas. The pen position determines the starting point
of the next line the program will draw, using the LineTo method. To change it,
you can use the canvas’s MoveTo method. Other properties of the canvas affect
lines and colors, too. Interesting examples are CopyMode and ScaleMode. Another
property you can manipulate directly to change the output is the Pixels array,
which you can use to access (read) or change (write) the color of any individual
point on the surface of the form. As we’ll see in the BmpDraw example, per pixel
operations are very slow in GDI, compared to line access available through the
ScanLines property.

Finally, keep in mind that Delphi’s TColor values do not always match plain
RGB values of the native Windows representation (COLORREF), because of Delphi
color constants. You can always convert a Delphi color to the RGB value using the
ColorToRGB function. You can find the details of Delphi’s representation in the
TColor type Help entry.

Drawing Shapes
Now I want to extend the Mouse1 example built at the end of Chapter 6 and turn
it into the Shapes application. In this new program I want to use the store-and-
draw approach with multiple shapes, handle color and pen attributes, and pro-
vide a foundation for further extensions.

Because you have to remember the position and the attributes of each shape,
you can create an object for each shape you have to store, and you can keep the
objects in a list. (To be more precise, the list will store references to the objects,
which are allocated in separate memory areas.) I’ve defined a base class for the
shapes and two inherited classes that contain the painting code for the two types
of shapes I want to handle, rectangles and ellipses.

The base class has a few properties, which simply read the fields and write the
corresponding values with simple methods. Notice that the coordinates can be
read using the Rect property but must be modified using the four positional
properties. The reason is that if you add a write portion to the Rect property,

Chapter 22 • Graphics in Delphi

http://www.sybex.com

7

you can access the rectangle as a whole but not its specific subproperties. Here are
the declarations of the three classes:

type
TBaseShape = class
private
FBrushColor: TColor;
FPenColor: TColor;
FPenSize: Integer;
procedure SetBrushColor(const Value: TColor);
procedure SetPenColor(const Value: TColor);
procedure SetPenSize(const Value: Integer);
procedure SetBottom(const Value: Integer);
procedure SetLeft(const Value: Integer);
procedure SetRight(const Value: Integer);
procedure SetTop(const Value: Integer);

protected
FRect: TRect;

public
procedure Paint (Canvas: TCanvas); virtual;

published
property PenSize: Integer read FPenSize write SetPenSize;
property PenColor: TColor read FPenColor write SetPenColor;
property BrushColor: TColor read FBrushColor write SetBrushColor;
property Left: Integer write SetLeft;
property Right: Integer write SetRight;
property Top: Integer write SetTop;
property Bottom: Integer write SetBottom;
property Rect: TRect read FRect;

end;

type
TEllShape = class (TBaseShape)
procedure Paint (Canvas: TCanvas); override;

end;

TRectShape = class (TBaseShape)
procedure Paint (Canvas: TCanvas); override;

end;

Most of the code in the methods is very simple. The only relevant code is in the
three Paint procedures:

procedure TBaseShape.Paint (Canvas: TCanvas);
begin
// set the attributes
Canvas.Pen.Color := fPenColor;

Drawing Shapes

http://www.sybex.com

8

Canvas.Pen.Width := fPenSize;
Canvas.Brush.Color := fBrushColor;

end;

procedure TEllShape.Paint(Canvas: TCanvas);
begin
inherited Paint (Canvas);
Canvas.Ellipse (fRect.Left, fRect.Top,
fRect.Right, fRect.Bottom)

end;

procedure TRectShape.Paint(Canvas: TCanvas);
begin
inherited Paint (Canvas);
Canvas.Rectangle (fRect.Left, fRect.Top,
fRect.Right, fRect.Bottom)

end;

All of this code is stored in the secondary ShapesH (Shapes Hierarchy) unit. To
store a list of shapes, the form has a TList object data member, named Shapes-
List, which is initialized in the OnCreate event handler and destroyed at the
end; the destructor also frees all the objects in the list (in reverse order, to avoid
refreshing the internal list data too often):

procedure TShapesForm.FormCreate(Sender: TObject);
begin
ShapesList := TList.Create;

end;

procedure TShapesForm.FormDestroy(Sender: TObject);
var
I: Integer;

begin
// delete each object
for I := ShapesList.Count - 1 downto 0 do
TBaseShape (ShapesList [I]).Free;

ShapesList.Free;
end;

The program adds a new object to the list each time the user starts the dragging
operation. Since the object is not completely defined, the form keeps a reference
to it in the CurrShape field. Notice that the type of object created depends on the
status of the mouse keys:

procedure TShapesForm.FormMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

Chapter 22 • Graphics in Delphi

http://www.sybex.com

9

begin
if Button = mbLeft then
begin
// activate dragging
fDragging := True;
SetCapture (Handle);

// create the proper object
if ssShift in Shift then
CurrShape := TEllShape.Create

else
CurrShape := TRectShape.Create;

// set the style and colors
CurrShape.PenSize := Canvas.Pen.Width;
CurrShape.PenColor := Canvas.Pen.Color;
CurrShape.BrushColor := Canvas.Brush.Color;

// set the initial position
CurrShape.Left := X;
CurrShape.Top := Y;
CurrShape.Right := X;
CurrShape.Bottom := Y;
Canvas.DrawFocusRect (CurrShape.Rect);

// add to the list
ShapesList.Add (CurrShape);

end;
end;

During the dragging operation we draw the line corresponding to the shape, as
I did in the Mouse1 example:

procedure TShapesForm.FormMouseMove(Sender: TObject; Shift:
TShiftState;
X, Y: Integer);

var
ARect: TRect;

begin
// copy the mouse coordinates to the title
Caption := Format (‘Shapes (x=%d, y=%d)’, [X, Y]);

// dragging code
if fDragging then
begin
// remove and redraw the dragging rectangle

Drawing Shapes

http://www.sybex.com

10

ARect := NormalizeRect (CurrShape.Rect);
Canvas.DrawFocusRect (ARect);
CurrShape.Right := X;
CurrShape.Bottom := Y;
ARect := NormalizeRect (CurrShape.Rect);
Canvas.DrawFocusRect (ARect);

end;
end;

This time, however, I’ve also added a fix to the program. In the Mouse1 exam-
ple, if you move the mouse toward the upper-left corner of the form while drag-
ging, the DrawFocusRect call produces no effect. The reason is that the rectangle
passed as a parameter to DrawFocusRect must have a Top value that is less than
the Bottom value, and the same is true for the Left and Right values. In other
words, a rectangle that extends itself on the negative side doesn’t work properly.
However, at the end it paints correctly, because the Rectangle drawing function
doesn’t have this problem.

To fix this problem I’ve written a simple function that inverts the coordinates of
a rectangle to make it reflect the requests of the DrawFocusRect call:

function NormalizeRect (ARect: TRect): TRect;
var
tmp: Integer;

begin
if ARect.Bottom < ARect.Top then
begin
tmp := ARect.Bottom;
ARect.Bottom := ARect.Top;
ARect.Top := tmp;

end;
if ARect.Right < ARect.Left then
begin
tmp := ARect.Right;
ARect.Right := ARect.Left;
ARect.Left := tmp;

end;
Result := ARect;

end;

Finally, the OnMouseUp event handler sets the definitive image size and
refreshes the painting of the form. Instead of calling the Invalidate method,
which would cause all of the images to be repainted with a lot of flickering, the
program uses the InvalidateRect API function:

procedure InvalidateRect(Wnd: HWnd;
Rect: PRect; Erase: Bool);

Chapter 22 • Graphics in Delphi

http://www.sybex.com

11

The three parameters represent the handle of the window (that is, the Handle
property of the form), the rectangle you want to repaint, and a flag indicating
whether or not you want to erase the area before repainting it. This function
requires, once more, a normalized rectangle. (You can try replacing this call with
one to Invalidate to see the difference, which is more obvious when you create
many forms.) Here is the complete code of the OnMouseUp handler:

procedure TShapesForm.FormMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
ARect: TRect;

begin
if fDragging then
begin
// end dragging
ReleaseCapture;
fDragging := False;

// set the final size
ARect := NormalizeRect (CurrShape.Rect);
Canvas.DrawFocusRect (ARect);
CurrShape.Right := X;
CurrShape.Bottom := Y;

// optimized invalidate code
ARect := NormalizeRect (CurrShape.Rect);
InvalidateRect (Handle, @ARect, False);

end;
end;

NOTE When you select a large drawing pen (we’ll look at the code for that shortly), the
border of the frame is painted partially inside and partially outside the frame, to
accommodate the large pen. To allow for this, we should invalidate a frame rec-
tangle that is inflated by half the size of the current pen. You can do this by calling
the InflateRect function. As an alternative, in the FormCreate method I’ve set
the Style of the Pen of the form Canvas to psInsideFrame. This causes the
drawing function to paint the pen completely inside the frame of the shape.

In the method corresponding to the OnPaint event, all the shapes currently
stored in the list are painted, as you can see in Figure 22.1. Since the painting code
affects the properties of the Canvas, we need to store the current values and reset
them at the end. The reason is that, as I’ll show you later in this chapter, the prop-
erties of the form’s canvas are used to keep track of the attributes selected by the

Drawing Shapes

http://www.sybex.com

12

user, who might have changed them since the last shape was created. Here is
the code:

procedure TShapesForm.FormPaint(Sender: TObject);
var
I, OldPenW: Integer;
AShape: TBaseShape;
OldPenCol, OldBrushCol: TColor;

begin
// store the current Canvas attributes
OldPenCol := Canvas.Pen.Color;
OldPenW := Canvas.Pen.Width;
OldBrushCol := Canvas.Brush.Color;

// repaint each shape of the list
for I := 0 to ShapesList.Count - 1 do
begin
AShape := ShapesList.Items [I];
AShape.Paint (Canvas);

end;

// reset the current Canvas attributes
Canvas.Pen.Color := OldPenCol;
Canvas.Pen.Width := OldPenW;
Canvas.Brush.Color := OldBrushCol;

end;

F I G U R E 2 2 . 1 :

The Shapes example can be
used to draw multiple shapes,
which it stores in a list.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

13

The other methods of the form are simple. Three of the menu commands allow
us to change the colors of the background, the shape borders (the pen), and the
internal area (the brush). These methods use the ColorDialog component and
store the result in the properties of the form’s canvas. This is an example:

procedure TShapesForm.PenColor1Click(Sender: TObject);
begin
// select a new color for the pen
ColorDialog1.Color := Canvas.Pen.Color;
if ColorDialog1.Execute then
Canvas.Pen.Color := ColorDialog1.Color;

end;

The new colors will affect shapes created in the future but not the existing ones. The
same approach is used for the width of the lines (the pen), although this time the
program also checks to see whether the value has become too small, disabling the
menu item if it has:

procedure TShapesForm.DecreasePenSize1Click(Sender: TObject);
begin
Canvas.Pen.Width := Canvas.Pen.Width - 2;
if Canvas.Pen.Width < 3 then
DecreasePenSize1.Enabled := False;

end;

To change the colors of the border (the pen) or the surface (the brush) of the
shape, I’ve used the standard Color dialog box. Here is one of the two methods:

procedure TShapesForm.PenColor1Click(Sender: TObject);
begin
ColorDialog1.Color := Canvas.Pen.Color;
if ColorDialog1.Execute then
Canvas.Pen.Color := ColorDialog1.Color;

end;

In Figure 22.2 you can see another example of the output of the Shapes pro-
gram, this time using multiple colors for the shapes and their background. The
program asks the user to confirm some operations, such as exiting from the pro-
gram or removing all the shapes from the list (with the File ➢ New command):

procedure TShapesForm.New1Click(Sender: TObject);
begin
if (ShapesList.Count > 0) and (MessageDlg (
‘Are you sure you want to delete all the shapes?’,
mtConfirmation, [mbYes, mbNo], 0) = idYes) then

begin
// delete each object
for I := ShapesList.Count - 1 downto 0 do

Drawing Shapes

http://www.sybex.com

14

TBaseShape (ShapesList [I]).Free;
ShapesList.Clear;
Refresh;

end;
end;

Printing Shapes
Besides painting the shapes on a form canvas, we can paint them on a printer
canvas, effectively printing them! Because it is possible to execute the same meth-
ods on a printer canvas as on any other canvas, you might be tempted to add to
the program a new method for printing the shapes. This is certainly easy, but an
even better option is writing a single output method to use for both the screen
and the printer.

As an example of this approach, I’ve built a new version of the program, called
ShapesPr. The interesting point is that I’ve moved the code of the FormPaint
example into another method I’ve defined, called CommonPaint. This new method
has two parameters, the canvas and a scale factor (which defaults to 1):

procedure CommonPaint(Canvas: TCanvas; Scale: Integer = 1);

F I G U R E 2 2 . 2 :

Changing the colors and the
line size of shapes allows you
to use the Shapes example to
produce any kind of result.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

15

The CommonPaint method outputs the list of shapes to the canvas passed as
parameters, using the proper scale factor:

procedure TShapesForm.CommonPaint (
Canvas: TCanvas; Scale: Integer);

var
I, OldPenW: Integer;
AShape: TBaseShape;
OldPenCol, OldBrushCol: TColor;

begin
// store the current Canvas attributes
OldPenCol := Canvas.Pen.Color;
OldPenW := Canvas.Pen.Width;
OldBrushCol := Canvas.Brush.Color;

// repaint each shape of the list
for I := 0 to ShapesList.Count - 1 do
begin
AShape := ShapesList.Items [I];
AShape.Paint (Canvas, Scale);

end;

// reset the current Canvas attributes
Canvas.Pen.Color := OldPenCol;
Canvas.Pen.Width := OldPenW;
Canvas.Brush.Color := OldBrushCol;

end;

Once you’ve written this code, the FormPaint and Print1Click methods are
simple to implement. To paint the image on the screen, you can call CommonPaint
without a scaling factor (so that the default value 1 is used):

procedure TShapesForm.FormPaint(Sender: TObject);
begin
CommonPaint (Canvas);

end;

To paint the contents of the form to the printer instead of the form, you can
reproduce the output on the printer canvas, using a proper scaling factor. Instead
of choosing a scale, I decided to compute it automatically. The idea is to print the
shapes on the form as large as possible, by sizing the form’s client area so that it
takes up the whole page. The code is probably simpler than the description:

procedure TShapesForm.Print1Click(Sender: TObject);
var
Scale, Scale1: Integer;

Drawing Shapes

http://www.sybex.com

16

begin
Scale := Printer.PageWidth div ClientWidth;
Scale1 := Printer.PageHeight div ClientHeight;
if Scale1 < Scale then
Scale := Scale1;

Printer.BeginDoc;
try
CommonPaint (Printer.Canvas, Scale);
Printer.EndDoc;

except
Printer.Abort;
raise;

end;
end;

Of course, you need to remember to call the specific commands to start printing
(BeginDoc) and commit the output (EndDoc) before and after you call the Common-
Paint method. If an exception is raised, the program calls Abort to terminate the
printing process anyway.

Delphi Graphical Components
The Shapes example uses almost no components, aside from a standard color-
selection dialog box. As an alternative, we could have used some Delphi compo-
nents that specifically support graphics:

• You use the PaintBox component when you need to paint on a certain area of
a form and that area might move on the form. For example, PaintBox is use-
ful for painting on a dialog box without the risk of mixing the area for the
output with the area for the controls. The PaintBox might fit within other
controls of a form, such as a toolbar or a status bar, and avoid any confusion
or overlapping of the output. In the Shapes example, using this component
made no sense, because we always worked on the whole surface of the form.

• You use the Shape component to paint shapes on the screen, exactly as we
have done up to now. You could indeed use the Shape component instead
of the manual output, but I really wanted to show you how to accomplish
some direct output operations. This approach was not much more complex
than the one Delphi suggests. Using the Shape component would have been
useful to extend the example, allowing a user to drag shapes on the screen,
remove them, and work on them in a number of other ways.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

17

• You can use the Image component to display an existing bitmap, possibly
loading it from a file, or even to paint on a bitmap, as I’ll demonstrate in the
next two examples and discuss in the next section.

• If it is included in your version of Delphi, you can use the TeeChart control to
create business graphics output, as we’ll see toward the end of this chapter.

• You can use the graphical support provided by the bitmap buttons and
speed button controls, among others. We’ll see later in this chapter how to
extend the graphical capabilities of these controls.

• You can use the Animate component to make the graphics more—well, ani-
mated. Besides using this component, you can manually create animations
by displaying bitmaps in sequence or scrolling them, as we’ll see other
examples.

As you can see, we have a long way to go to cover Delphi’s graphics support
from all of its angles.

Drawing in a Bitmap
I’ve already mentioned that by using an Image component, you can draw images
directly in a bitmap. Instead of drawing on the surface of a window, you draw on
a bitmap in memory and then copy the bitmap to the surface of the window. The
advantage is that instead of having to repaint the image each time an OnPaint
event occurs, the component copies the bitmap back to video.

Technically, a TBitmap object has its own canvas. By drawing on this canvas,
you can change the contents of the bitmap. As an alternative, you can work on
the canvas of an Image component connected to the bitmap you want to change.
You might consider choosing this approach instead of the typical painting
approach if any of the following conditions are true:

• The program has to support freehand drawing or very complex graphics
(such as fractal images).

• The program should be very fast in drawing a number of images.

• RAM consumption is not an issue.

• You are a lazy programmer.

The last point is interesting because painting generally requires more code than
drawing, although it allows more flexibility. In a graphics program, for example,

Drawing in a Bitmap

http://www.sybex.com

18

if you use painting, you have to store the location and colors of each shape. On
the other hand, you can easily change the color of an existing shape or move it.
These operations are very difficult with the painting approach and may cause
the area behind an image to be lost. If you are working on a complex graphical
application, you should probably choose a mix of the two approaches. For casual
graphics programmers, the choice between the two approaches involves a typical
speed-versus-memory decision: painting requires less memory; storing the bitmap
is faster.

Drawing Shapes
Now let’s look at an Image component example that will paint on a bitmap. The
idea is simple. I’ve basically written a simplified version of the Shape example, by
placing an Image component on its form and redirecting all the output operations
to the canvas of this Image component.

In this example, ShapeBmp, I’ve also added some new menu items to save the
image to a file and to load an existing bitmap. To accomplish this, I’ve added to
the form a couple of default dialog components, OpenDialog and SaveDialog.
One of the properties I had to change was the background color of the form. In
fact, when you perform the first graphical operation on the image, it creates a
bitmap, which has a white background by default. If the form has a gray back-
ground, each time the window is repainted, some flickering occurs. For this rea-
son, I’ve chosen a white background for the form, too.

The code of this example is still quite simple, considering the number of oper-
ations and menu commands. The drawing portion is linear and very close to
Mouse1, except that the mouse events now relate to the image instead of the form;
I’ve used the NormalizeRect function during the dragging; and the program uses
the canvas of the image. Here is the OnMouseMove event handler, which reintro-
duces the drawing of points when moving the mouse with the Shift key pressed:

procedure TShapesForm.Image1MouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

var
ARect: TRect;

begin
// display the position of the mouse in the caption
Caption := Format (‘ShapeBmp (x=%d, y=%d)’, [X, Y]);
if fDragging then
begin
// remove and redraw the dragging rectangle

Chapter 22 • Graphics in Delphi

http://www.sybex.com

19

ARect := NormalizeRect (fRect);
Canvas.DrawFocusRect (ARect);
fRect.Right := X;
fRect.Bottom := Y;
ARect := NormalizeRect (fRect);
Canvas.DrawFocusRect (ARect);

end
else
if ssShift in Shift then
// mark point in red
Image1.Canvas.Pixels [X, Y] := clRed;

end;

Notice that the temporary focus rectangle is painted directly on the form, over
the image (and thus not stored in the bitmap). What is different is that at the end
of the dragging operation, the program paints the rectangle on the image, storing
it in the bitmap. This time the program doesn’t call Invalidate and has no
OnPaint event handler:

procedure TShapesForm.Image1MouseUp(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if fDragging then
begin
ReleaseCapture;
fDragging := False;
Image1.Canvas.Rectangle (fRect.Left, fRect.Top,
fRect.Right, fRect.Bottom);

end;
end;

To avoid overly complex file support, I decided to implement the File ➢ Load
and File ➢ Save As commands and not handle the Save command, which is gen-
erally more complex. I’ve simply added an fChanged field to the form to know
when an image has changed, and I’ve included code that checks this value a
number of times (before asking the user to confirm).

The OnClick event handler of the File ➢ New menu item calls the FillArea
method to paint a big white rectangle over the whole bitmap. In this code you can
also see how the Changed field is used:

procedure TShapesForm.New1Click(Sender: TObject);
var
Area: TRect;
OldColor: TColor;

Drawing in a Bitmap

http://www.sybex.com

20

begin
if not fChanged or (MessageDlg (
‘Are you sure you want to delete the current image?’,
mtConfirmation, [mbYes, mbNo], 0) = idYes) then

begin
{repaint the surface, covering the whole area,
and resetting the old brush}
Area := Rect (0, 0, Image1.Picture.Width,
Image1.Picture.Height);

OldColor := Image1.Canvas.Brush.Color;
Image1.Canvas.Brush.Color := clWhite;
Image1.Canvas.FillRect (Area);
Image1.Canvas.Brush.Color := OldColor;
fChanged := False;

end;
end;

Of course, the code has to save the original color and restore it later on. A
realignment of the colors is also required by the File ➢ Load command-response
method. When you load a new bitmap, in fact, the Image component creates a
new canvas with the default attributes. For this reason, the program saves the
pen’s colors and size and copies them later to the new canvas:

procedure TShapesForm.Load1Click(Sender: TObject);
var
PenCol, BrushCol: TColor;
PenSize: Integer;

begin
if not fChanged or (MessageDlg (

‘Are you sure you want to delete the current image?’,
mtConfirmation, [mbYes, mbNo], 0) = idYes) then

if OpenDialog1.Execute then
begin
PenCol := Image1.Canvas.Pen.Color;
BrushCol := Image1.Canvas.Brush.Color;
PenSize := Image1.Canvas.Pen.Width;
Image1.Picture.LoadFromFile (OpenDialog1.Filename);
Image1.Canvas.Pen.Color := PenCol;
Image1.Canvas.Brush.Color := BrushCol;
Image1.Canvas.Pen.Width := PenSize;
fChanged := False;

end;
end;

Chapter 22 • Graphics in Delphi

http://www.sybex.com

21

Saving the current image is much simpler:

procedure TShapesForm.Saveas1Click(Sender: TObject);
begin
if SaveDialog1.Execute then
begin
Image1.Picture.SaveToFile (
SaveDialog1.Filename);

fChanged := False;
end;

end;

Finally, here is the code of the OnCloseQuery event of the form, which uses the
Changed field:

procedure TShapesForm.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
if not fChanged or (MessageDlg (

‘Are you sure you want to delete the current image?’,
mtConfirmation, [mbYes, mbNo], 0) = idYes) then

CanClose := True
else
CanClose := False;

end;

ShapeBmp is an interesting program (see Figure 22.3), with limited but work-
ing file support. The real problem is that the Image component creates a bitmap
of its own size. When you increase the size of the window, the Image component
is resized but not the bitmap in memory. Therefore, you cannot draw on the right
and bottom areas of the window. There are a number of possible solutions: use the
Constraints property to set the maximum size of the form, use a fixed border,
visually mark the drawing area on the screen, and so on. However, I’ve decided to
leave the program as is because it does its job of demonstrating how to draw in a
bitmap well enough.

F I G U R E 2 2 . 3 :

The ShapeBmp example has
limited but working file sup-
port: you can load an existing
bitmap, draw shapes over it,
and save it to disk.

Drawing in a Bitmap

http://www.sybex.com

22

An Image Viewer
The ShapeBmp program can be used as an image viewer, because you can load
any bitmap in it. In general, in the Image control you can load any graphic file
type that has been registered with the VCL TPicture class. The default file for-
mats are bitmap files (BMP), icon files (ICO), or Windows metafiles (WMF).
Bitmap and icon files are well-known formats. Windows metafiles, however, are
not so common. They are a collection of graphical commands, similar to a list of
GDI function calls that need to be executed to rebuild an image. Metafiles are
usually referred to as vector graphics and are similar to the graphics file formats
used for clip-art libraries. Delphi also ships with JPG support for TImage, and
third parties have GIF and other file formats covered.

NOTE To produce a Windows metafile, a program should call GDI functions, redirecting
their output to the file. In Delphi, you can use a TMetafileCanvas and the high-
level TCanvas methods. Later on, this metafile can be played or executed to call
the corresponding functions, thus producing a graphic. Metafiles have two main
advantages: the limited amount of storage they require compared to other graph-
ical formats, and the device-independence of their output. I’ll cover Delphi
metafile support later in this chapter.

To build a full-blown image viewer program, ImageV, around the Image com-
ponent, we only need to create a form with an image that fills the whole client
area, a simple menu, and an OpenDialog component:

object ViewerForm: TViewerForm
Caption = ‘Image Viewer’
Menu = MainMenu1
object Image1: TImage
Align = alClient

end
object MainMenu1: TMainMenu
object File1: TMenuItem...
object Open1: TMenuItem...
object Exit1: TMenuItem...

object Options1: TMenuItem
object Stretch1: TMenuItem
object Center1: TMenuItem

object Help1: TMenuItem
object AboutImageViewer1: TMenuItem

end
object OpenDialog1: TOpenDialog
FileEditStyle = fsEdit

Chapter 22 • Graphics in Delphi

http://www.sybex.com

23

Filter = ‘Bitmap (*.bmp)|*.bmp|
Icon (*.ico)|*.ico|Metafile (*.wmf)|*.wmf’

Options = [ofHideReadOnly, ofPathMustExist,
ofFileMustExist]

end
end

Surprisingly, this application requires very little coding, at least in its first basic
version. The File ➢ Exit and Help ➢ About commands are trivial, and the File ➢
Open command has the following code:

procedure TViewerForm.Open1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
begin
Image1.Picture.LoadFromFile (OpenDialog1.FileName);
Caption := ‘Image Viewer - ‘ + OpenDialog1.FileName;

end;
end;

The fourth and fifth menu commands, Options ➢ Stretch and Options ➢ Cen-
ter, simply toggle the component’s Stretch property (see Figure 22.4 for the
result) or Center property and add a check mark to themselves. Here is the
OnClick event handler of the Stretch1 menu item:

procedure TViewerForm.Stretch1Click(Sender: TObject);
begin
Image1.Stretch := not Image1.Stretch;
Stretch1.Checked := Image1.Stretch;

end;

F I G U R E 2 2 . 4 :

Two copies of the ImageV
program, which display the
regular and stretched ver-
sions of the same bitmap

Drawing in a Bitmap

http://www.sybex.com

24

Keep in mind that when stretching an image, you can change its width-to-height
ratio, possibly distorting the shape, and that not all images can be properly stretched.
Stretching black-and-white or 256-color bitmaps doesn’t always work correctly.

Besides this problem, the application has some other drawbacks. If you select a
file without one of the standard extensions, the Image component will raise an
exception. The exception handler provided by the system behaves as we would
expect; the wrong image file is not loaded, and the program can safely continue.
Another problem is that if you load a large image, the viewer has no scroll bars.
You can maximize the viewer window, but this might not be enough. The Image
components do not handle scroll bars automatically, but the form can do it. I’ll
further extend this example to include scroll bars in the following paragraph.

Scrolling an Image
An advantage of the way automatic scrolling works in Delphi is that if the size
of a single big component contained in a form changes, scroll bars are added or
removed automatically. A good example is the use of the Image component. If the
AutoSize property of this component is set to True and you load a new picture
into it, the component automatically sizes itself, and the form adds or removes
the scroll bars as needed.

If you load a large bitmap in the ImageV example, you will notice that part of
the bitmap remains hidden. To fix this, you can set the AutoSize property of the
Image component to True and disable its alignment with the client area. You
should also set a small initial size for the image. You don’t need to make any
adjustments when you load a new bitmap, because the size of the Image compo-
nent is automatically set for you by the system. You can see in Figure 22.5 that
scroll bars are actually added to the form. The figure shows two different copies
of the program. The difference between the copy of the program on the left and
the one on the right is that the first has an image smaller than its client area, so no
scroll bars were added. When you load a larger image in the program, two scroll
bars will automatically appear, as in the example on the right.

F I G U R E 2 2 . 5 :

In the ImageV2 example,
the scroll bars are added
automatically to the form
when the whole bitmap
cannot fit into the client
area of the form displayed.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

25

Some more coding is required to disable the scroll bars and change the align-
ment of the image when the Stretch menu command is selected and to restore
them when this feature is disabled. Again, we do not act directly on the scroll bars
themselves but simply change the alignment of the panel, using its Stretch prop-
erty, and manually calculate the new size, using the size of the picture currently
loaded. (This code mimics the effect of the AutoSize property, which works only
when a new file is loaded.)

procedure TViewerForm.Stretch1Click(Sender: TObject);
begin
Image1.Stretch := not Image1.Stretch;
Stretch1.Checked := Image1.Stretch;
if Image1.Stretch then
Image1.Align := alClient

else
begin
Image1.Align := alNone;
Image1.Height := Image1.Picture.Height;
Image1.Width := Image1.Picture.Width;
end;

end;

Bitmaps to the Max
When the Image control is connected to a bitmap, there are some additional opera-
tions you can do, but before we examine them, I have to introduce bitmap formats.
There are different types of bitmaps in Windows. Bitmaps can be device-independent
or not, a term used to indicate whether the bitmap has extra palette management
information. BMP files are usually device-independent bitmaps.

Another difference relates to the color depth—that is, the number of different
colors the bitmap can use or, in other words, the number of bits required for stor-
ing each pixel. In a 1-bit bitmap, each point can be either black or white (to be
more precise, 1-bit bitmaps can have a color palette, allowing the bitmap to repre-
sent any two colors and not just black and white). An 8-bit bitmap usually has a
companion palette to indicate how the 256 different colors map to the actual sys-
tem colors, a 24-bit bitmap indicates the system color directly. To make things
more complex, when the system draws a bitmap on a computer with a different
color capability, it has to perform some conversion.

Internally the bitmap format is very simple, whatever the color depth. All the
values that make up a line are stored sequentially in a memory block. This is effi-
cient for moving the data from memory to the screen, but it is not an effective
way to store information; BMP files are generally very large, and they perform no
compression.

Drawing in a Bitmap

http://www.sybex.com

26

NOTE The BMP format actually has a very limited form of compression, known as Run-
Length Encoding (RLE), in which subsequent pixels with the same color are
replaced by the number of such pixels followed by the color. This can reduce the
size of the image, but in some cases it will make it grow. For compressed images
in Delphi, you can use the TJpegImage class and the support for the JPEG format
offered by the TPicture class. Actually, all TPicture does is to manage a regis-
tered list of graphic classes.

The BmpDraw example uses this information about the internal structure of a
bitmap and some other technical features to take direct handling of bitmaps to a
new level. First, it extends the ImageV example by adding a menu item you can
use to display the color depth of the current bitmap, by using the corresponding
PixelFormat property:

procedure TBitmapForm.ColorDepth1Click(Sender: TObject);
var
strDepth: String;

begin
case Image1.Picture.Bitmap.PixelFormat of
pfDevice: strDepth := ‘Device’;
pf1bit: strDepth := ‘1-bit’;
pf4bit: strDepth := ‘4-bit’;
pf8bit: strDepth := ‘8-bit’;
pf15bit: strDepth := ‘15-bit’;
pf16bit: strDepth := ‘16-bit’;
pf24bit: strDepth := ‘24-bit’;
pf32bit: strDepth := ‘32-bit’;
pfCustom: strDepth := ‘Custom’;

end;
MessageDlg (‘Bitmap color depth: ‘ + strDepth,
mtInformation, [mbOK], 0);

end;

You can try loading different bitmaps and see the effect of this method, as shown
in Figure 22.6.

What is more interesting is to study how to access the memory image held by
the bitmap object. A simple solution is to use the Pixels property, as I’ve done
in the ShapeBmp example, to draw the red pixels during the dragging operation.
In this program I’ve added a menu item to create an entire new bitmap pixel by
pixel, using a simple mathematical calculation to determine the color. (The same
approach can be used, for example, to build fractal images.)

Chapter 22 • Graphics in Delphi

http://www.sybex.com

27

Here is the code of the method, which simply scans the bitmap in both direc-
tions and defines the color of each pixel. Because we are doing many operations
on the bitmap, I can store a reference to it in the local Bmp variable for simplicity:

procedure TBitmapForm.GenerateSlow1Click(Sender: TObject);
var
Bmp: TBitmap;
I, J, T: Integer;

begin
// get the image and modify it
Bmp := Image1.Picture.Bitmap;
Bmp.PixelFormat := pf24bit;
Bmp.Width := 256;
Bmp.Height := 256;

T := GetTickCount;
// change every pixel
for I := 0 to Bmp.Height - 1 do
for J := 0 to Bmp.Width - 1 do
Bmp.Canvas.Pixels [I, J] := RGB (I*J mod 255, I, J);

Caption := ‘Image Viewer - Memory Image (MSecs: ‘ +
IntToStr (GetTickCount - T) + ‘)’;

end;

Notice that the program keeps track of the time required by this operation,
which on my computer takes about six seconds. As you see from the name of the
function, this is the slow version of the code.

We can speed it up considerably by accessing the bitmap one entire row at a time.
This little-known feature is available through the ScanLine property of the bitmap,

F I G U R E 2 2 . 6 :

The color depth of a stan-
dard Windows bitmap, as
displayed by the BmpDraw
example

Drawing in a Bitmap

http://www.sybex.com

28

which returns a pointer to the memory area of the bitmap line. By taking this
pointer and accessing the memory directly, we make the program much faster. The
only problem is that we need to know the internal representation of the bitmap. In
the case of a 24-bit bitmap, every point is represented by three bytes defining the
amount of blue, green, and red (the reverse of the RGB sequence). Here is the alter-
native code, with a slightly different output (as I’ve deliberately modified the calcu-
lation of the color):

procedure TBitmapForm.GenerateFast1Click(Sender: TObject);
var
Bmp: TBitmap;
I, J, T: Integer;
Line: PByteArray;

begin
// get the image and modify it
Bmp := Image1.Picture.Bitmap;
Bmp.PixelFormat := pf24bit;
Bmp.Width := 256;
Bmp.Height := 256;

T := GetTickCount;
// change every pixel, line by line
for I := 0 to Bmp.Height - 1 do
begin
Line := PByteArray (Bmp.ScanLine [I]);
for J := 0 to Bmp.Width - 1 do
begin
Line [J*3] := J;
Line [J*3+1] := I*J mod 255;
Line [J*3+2] := I;

end;
end;
// refresh the video
Image1.Invalidate;
Caption := ‘Image Viewer - Memory Image (MSecs: ‘ +
IntToStr (GetTickCount - T) + ‘)’;

end;

Simply moving a line in memory doesn’t cause a screen update, so the program
calls Invalidate at the end. The output produced by this second method (see Fig-
ure 22.7) is very similar, but the time it takes on my computer is about 60 millisec-
onds. That’s about one hundredth the time of the other approach! This technique
is so fast that we can use it for scrolling the lines of the bitmap and still produce a
fast and smooth effect. The scrolling operation has a few options, so as you select
the corresponding menu items, the program simply shows a panel inside the form.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

29

This panel has a trackbar you can use to adjust the speed of the scrolling operation
(reducing its smoothness as the speed increases). The position of the trackbar is
saved in a local field of the form:

procedure TBitmapForm.TrackBar1Change(Sender: TObject);
begin
nLines := TrackBar1.Position;
TrackBar1.Hint := IntToStr (TrackBar1.Position);

end;

In the panel there are also two buttons used to start and stop the scrolling opera-
tion. The code of the Go button has two for loops. The external loop is used to
repeat the scrolling operation, as many times as there are lines in the bitmap. The
internal loop does the scrolling operation by copying each line of the bitmap to the
previous one. The first line is temporarily stored in a memory block and then copied
to the last line at the end. This temporary memory block is kept in a dynamically
allocated memory area (AllocMem) large enough to hold one line. This information
is obtained by computing the difference in the memory addresses of two consecu-
tive lines.

The core of the moving operation is accomplished using Delphi’s Move function.
Its parameters are the variable to be moved, not the memory addresses. For this
reason, you have to de-reference the pointers. (Well, this method is really a good
exercise on pointers!) Finally, notice that this time we cannot invalidate the entire
image after each scrolling operation, as this produces too much flickering in the
output. The opposite solution is to invalidate each line after it has been moved,
but this makes the program far too slow. As an in-between solution, I decided to
invalidate a block of lines at a time, as determined by the J mod nLines = 0

F I G U R E 2 2 . 7 :

The drawing you see on the
screen is generated by the
BmpDraw example in a frac-
tion of a second (as reported
in the caption).

Drawing in a Bitmap

http://www.sybex.com

30

expression. When a given number of lines has been moved, the program refreshes
those lines:

Rect (0, PanelScroll.Height + H - nLines,
W, PanelScroll.Height + H);

As you can see, the number of lines is determined by the position of the TrackBar
control.

A user can even change the speed by moving their thumb during the scrolling
operation. We also allow the user to press the Cancel button during the operation.
This is made possible by the call to Application.ProcessMessages in the exter-
nal for loop. The Cancel button changes the fCancel flag, which is checked at
each iteration of the external for loop:

procedure TBitmapForm.BtnCancelClick(Sender: TObject);
begin
fCancel := True;

end;

So, after all this description, here is the complete code of the Go button’s
OnClick event handler:

procedure TBitmapForm.BtnGoClick(Sender: TObject);
var
W, H, I, J, LineBytes: Integer;
Line: PByteArray;
Bmp: TBitmap;
R: TRect;

begin
// set the user interface
fCancel := False;
BtnGo.Enabled := False;
BtnCancel.Enabled := True;

// get the bitmap of the image and resize it
Bmp := Image1.Picture.Bitmap;
W := Bmp.Width;
H := Bmp.Height;

// allocate enough memory for one line
LineBytes := Abs (Integer (Bmp.ScanLine [1]) -
Integer (Bmp.ScanLine [0]));

Line := AllocMem (LineBytes);

// scroll as many items as there are lines
for I := 0 to H - 1 do

Chapter 22 • Graphics in Delphi

http://www.sybex.com

31

begin
// exit the for loop if Cancel was pressed
if fCancel then
Break;

// copy the first line
Move ((Bmp.ScanLine [0])^, Line^, LineBytes);

// for every line
for J := 1 to H - 1 do
begin
// move line to the previous one
Move ((Bmp.ScanLine [J])^, (Bmp.ScanLine [J-1])^, LineBytes);
// every nLines update the output
if (J mod nLines = 0) then
begin
R := Rect (0, PanelScroll.Height + J-nLines,

W, PanelScroll.Height + J);
InvalidateRect (Handle, @R, False);
UpdateWindow (Handle);

end;
end;

// move the first line back to the end
Move (Line^, (Bmp.ScanLine [Bmp.Height - 1])^, LineBytes);
// update the final portion of the bitmap
R := Rect (0, PanelScroll.Height + H - nLines,
W, PanelScroll.Height + H);

InvalidateRect (Handle, @R, False);
UpdateWindow (Handle);

// let the program handle other messages
Application.ProcessMessages;

end;

// reset the UI
BtnGo.Enabled := True;
BtnCancel.Enabled := False;

end;

You can see a bitmap during the scrolling operation in Figure 22.8. Notice that
the scrolling can take place on any type of bitmap, not just the 24-bit bitmaps gen-
erated by this program. You can, in fact, load another bitmap into the program
and then scroll it, as I did to create the illustration.

Drawing in a Bitmap

http://www.sybex.com

32

An Animated Bitmap in a Button
Bitmap buttons are easy to use and can produce better-looking applications than
the standard push buttons (the Button component). To further improve the visual
effect of a button, we can also think of animating the button. There are basically
two kinds of animated buttons—buttons that change their glyph slightly when
they are pressed and buttons having a moving image, regardless of the current
operation. I’ll show you a simple example of each kind, Fire and World. For each
of these examples, we’ll explore a couple of slightly different versions.

A Two-State Button
The first example, the Fire program, has a very simple form, containing only a
bitmap button. This button is connected to a Glyph representing a cannon. Imagine

F I G U R E 2 2 . 8 :

The BmpDraw example
allows fast scrolling of a
bitmap.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

33

such a button as part of a game program. As the button is pressed, the glyph
changes to show a firing cannon. As soon as the button is released, the default
glyph is loaded again. In between, the program displays a message if the user
has actually clicked the button.

To write this program, we need to handle three of the button’s events: OnMouse-
Down, OnMouseUp, and OnClick. The code of the three methods is extremely simple:

procedure TForm1.BitBtnFireMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
// load firing cannon bitmap
if Button = mbLeft then
BitBtnFire.Glyph.LoadFromFile (‘fire2.bmp’);

end;

procedure TForm1.BitBtnFireMouseUp(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
// load default cannon bitmap
if Button = mbLeft then
BitBtnFire.Glyph.LoadFromFile (‘fire.bmp’);

end;

procedure TForm1.BitBtnFireClick(Sender: TObject);
begin
PlaySound (‘Boom.wav’, 0, snd_Async);
MessageDlg (‘Boom!’, mtWarning, [mbOK], 0);

end;

I’ve added some sound capabilities, playing a WAV file when the button is
pressed with a call to the PlaySound function of the MmSystem unit. When you
hold down the left mouse button over the bitmap button, the bitmap button is
pressed. If you then move the mouse cursor away from the button while holding
down the mouse button, the bitmap button is released, but it doesn’t get an
OnMouseUp event, so the firing cannon remains there. If you later release the left
mouse button outside the surface of the bitmap button, it receives the OnMouseUp
event anyway. The reason is that all buttons in Windows capture the mouse input
when they are pressed.

Many Images in a Bitmap
The Fire example used a manual approach. I loaded two bitmaps and changed
the value of the Glyph property when I wanted to change the image. The BitBtn
component, however, can also handle a number of bitmaps automatically. You

An Animated Bitmap in a Button

http://www.sybex.com

34

can prepare a single bitmap that contains a number of images (or glyphs) and set
this number as the value of the NumGlyphs property. All such “sub-bitmaps” must
have the same size because the overall bitmap is divided into equal parts.

If you provide more than one glyph in the bitmap, they are used according to
the following rules:

• The first bitmap is used for the released button, the default position.

• The second bitmap is used for the disabled button.

• The third bitmap is used when the button is clicked.

• The fourth bitmap is used when the button remains down, as in buttons
behaving as check boxes.

Usually you provide a single glyph and the others are automatically computed
from it, with simple graphical changes. However, it is easy to provide a second, a
third, and a fourth customized picture. If you do not provide all four bitmaps, the
missing ones will be computed automatically from the first one.

In our example, the new version of Fire (named Fire2), we only need the first
and third glyphs of the bitmap but are obliged to add the second bitmap. To see
how this glyph (the second of the bitmap) can be used, I’ve added a check box to
disable the bitmap button. To build the new version of the program, I’ve prepared
a bitmap of 32 × 96 pixels (see Figure 22.9) and used it for the Glyph property of
the bitmap. Delphi automatically set the NumGlyphs property to 3, because the
bitmap is three times wider than it is high.

F I G U R E 2 2 . 9 :

The bitmap with three images
of the Fire2 example, as seen
in the Delphi Image Editor

Chapter 22 • Graphics in Delphi

http://www.sybex.com

35

The check box, used to enable and disable the button (so we can see the glyph
corresponding to the disabled status), has the following OnClick event:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin
BitBtnFire.Enabled := CheckBox1.Checked;

end;

When you run the program, there are two ways to change the bitmap in the but-
ton. You can disable the bitmap button by using the check box (see Figure 22.10), or
you can press the button to see the cannon fire. In the first version (the Fire exam-
ple), the image with the firing cannon remained on the button until the message box
was closed. Now (in the Fire2 example) the image is shown only while the button is
pressed. As soon as you move outside the surface of the button, or release the button
after having pressed it (activating the message box), the first glyph is displayed.

The Rotating World
The second example of animation, World, has a button featuring the earth, which
slowly rotates, showing the various continents. You can see some samples in Fig-
ure 22.11, but, of course, you should run the program to see its output. In the pre-
vious example, the image changed when the button was pressed. Now the image
changes by itself, automatically. This occurs thanks to the presence of a Timer
component, which receives a message at fixed time intervals.

Here is a summary of the component properties:

object WorldForm: TWorldForm
Caption = ‘World’
OnCreate = FormCreate
object Label1: TLabel...
object WorldButton: TBitBtn
Caption = ‘&Start’
OnClick = WorldButtonClick

F I G U R E 2 2 . 1 0 :

The enabled and disabled
bitmap buttons of the Fire2
example, in two different
copies of the application

An Animated Bitmap in a Button

http://www.sybex.com

36

Glyph.Data = {W1.bmp}
Spacing = 15

end
object Timer1: TTimer
Enabled = False
Interval = 500
OnTimer = Timer1Timer

end
end

The timer component is started and stopped (enabled and disabled) when the
user presses the bitmap button with the world image:

procedure TWorldForm.WorldButtonClick(Sender: TObject);
begin
if Timer1.Enabled then
begin
Timer1.Enabled := False;
WorldButton.Caption := ‘&Start’;

end
else
begin
Timer1.Enabled := True;
WorldButton.Caption := ‘&Stop’;

end;
end;

As you can see in Figure 22.11, a label above the button indicates which of the
images is being displayed. Each time the timer message is received, the image
and label change:

procedure TWorldForm.Timer1Timer(Sender: TObject);
begin
Count := (Count mod 16) + 1;
Label1.Caption := ‘Displaying image ‘ +

F I G U R E 2 2 . 1 1 :

Some examples of the run-
ning World program

Chapter 22 • Graphics in Delphi

http://www.sybex.com

37

IntToStr (Count);
WorldButton.Glyph.LoadFromFile (
‘w’ + IntToStr (Count) + ‘.bmp’);

end;

In this code, Count is a field of the form that is initialized to 1 in the FormCreate
method. At each timer interval, Count is increased modulus 16 and then converted
into a string (preceded by the letter w). The reason for this limit is simple—I had 16
bitmaps of the earth to display. Naming the bitmap files W1.BMP, W2.BMP, and so on
makes it easy for the program to access them, building the strings with the name at
run time.

NOTE The modulus operation returns the remainder of the division between integers.
This means that Count mod 16 invariably returns a value in the range 0–15.
Adding one to this return value, we obtain the number of the bitmap, which is in
the range 1–16.

A List of Bitmaps, the Use of Resources,
and a ControlCanvas

The World program works, but it is very slow, for a couple of reasons. First of all,
at each timer interval, it needs to read a file from the disk, and although a disk
cache can make this faster, it is certainly not the most efficient solution. Besides
reading the file from disk, the program has to create and destroy Windows bitmap
objects, and this takes some time. The second problem depends on how the image
is updated: When you change the button’s bitmap, the component is completely
erased and repainted. This causes some flickering, as you can see by running the
program.

To solve the first problem (and to show you a different approach to handling
bitmaps), I’ve created a second version of the example, World2. Here I’ve added a
TObjectList Delphi 5 container, storing a list of bitmaps, to the program’s form.
The form has also some more fields:

type
TWorldForm = class(TForm)
...

private
Count, YPos, XPos: Integer;
BitmapsList: TObjectList;
ControlCanvas: TControlCanvas;

end;

An Animated Bitmap in a Button

http://www.sybex.com

38

All the bitmaps are loaded when the program starts and destroyed when it ter-
minates. At each timer interval, the program shows one of the list’s bitmaps in the
bitmap button. By using a list, we avoid loading a file each time we need to dis-
play a bitmap, but we still need to have all the files with the images in the direc-
tory with the executable file. A solution to this problem is to move the bitmaps
from independent files to the application’s resource file. This is easier to do than
to explain.

To use the resources instead of the bitmap files, we need to first create this file.
The best approach is to write a resource script (an RC file), listing the names of the
bitmap files and of the corresponding resources. Open a new text file (in any edi-
tor) and write the following code:

W1 BITMAP “W1.BMP”
W2 BITMAP “W2.BMP”
W3 BITMAP “W3.BMP”
// ... and so on

Once you have prepared this RC file (I’ve named it WorldBmp.RC), you can
compile it into a RES file using the resource compiler included and the BRCC32
command-line application you can find in the BIN directory of Delphi, and then
include it in the project by adding the {$R WORLDBMP.RES} directive in the project
source code file or in one of the units.

In Delphi 5, however, you can use a simpler approach. You can take the RC
file and simply add it to the project using the Project Manager Add command or
simply dragging the file to the project. Delphi 5 will automatically activate the
resource compiler, and it will then bind the resource file into the executable file.
These operations are controlled by an extended resource inclusion directive
added to the project source code:

{$R ‘WORLDBMP.res’ WORLDBMP.RC’}

Once we have properly defined the resources of the application, we need
to load the bitmaps from the resources. For a TBitmap object we can use the Load-
FromResourceName method, if the resource has a string identifier, or the LoadFrom-
ResourceID method, if it has a numeric identifier. The first parameter of both
methods is a handle to the application, known as HInstance, available in Delphi
as a global variable.

TIP Delphi defines a second global variable, MainInstance, which refers to the HIn-
stance of the main executable file. Unless you are inside a DLL, you can use one
or the other interchangeably.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

39

This is the code of the FormCreate method:

procedure TWorldForm.FormCreate(Sender: TObject);
var
I: Integer;
Bmp: TBitmap;

begin
Count := 1;
// load the bitmaps and add them to the list
BitmapsList := TList.Create;
for I := 1 to 16 do
begin
Bmp := TBitmap.Create;
Bmp.LoadFromResourceName (HInstance,
‘W’ + IntToStr (I));

BitmapsList.Add (Bmp);
end;

end;

NOTE As an alternative, we could have used the ImageList component, but for this
example I decided to use a low-level approach to show you all the details involved.

One problem remains to be solved: obtaining a smooth transition from one
image of the world to the following one. The program should paint the bitmaps
in a canvas using the Draw method. Unfortunately, the bitmap button’s canvas is
not directly available (and not event protected), so I decided to use a TControl-
Canvas (usually the internal canvas of a control, but one you can also associate to
externally) To use it to paint over a button, we can assign the button to the control
canvas in the FormCreate method:

ControlCanvas := TControlCanvas.Create;
ControlCanvas.Control := WorldButton;
YPos := (WorldButton.Height - Bmp.Height) div 2;
XPos := WorldButton.Margin;

The horizontal position of the button where the image is located (and where we
should paint) depends on the Margin of the icon of the bitmap button and on the
height of the bitmap. Once the control canvas is properly set, the Timer1Timer
method simply paints over it—and over the button:

procedure TWorldForm.Timer1Timer(Sender: TObject);
begin
Count := (Count mod 16) + 1;
Label1.Caption := Format (‘Displaying image %d’, [Count]);
// draw the current bitmap in the control canvas

An Animated Bitmap in a Button

http://www.sybex.com

40

ControlCanvas.Draw (XPos, YPos,
BitmapsList.Items[Count-1] as TBitmap);

end;

The last problem is to move the position of the image when the left mouse but-
ton is pressed or released over it (that is, in the OnMouseDown and OnMouseUp
events of the button). Besides moving the image by few pixels, we should update
the glyph of the bitmap, because Delphi will automatically display it while
redrawing the button. Otherwise, a user would see the initial image until the
timer interval elapsed and the component fired the OnTimer event. (That might
take a while if you’ve stopped it!) Here is the code of the first of the two methods:

procedure TWorldForm.WorldButtonMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Button = mbLeft then
begin
// paint the current image over the button
WorldButton.Glyph.Assign (
BitmapsList.Items[Count-1] as TBitmap);

Inc (YPos, 2);
Inc (XPos, 2);

end;
end;

The Animate Control
There is a better way to obtain animation than displaying a series of bitmaps in
sequence. Use the Win32 Animate common control. The Animate control is based on
the use of AVI (Audio Video Interleaved) files, a series of bitmaps similar to a movie.

NOTE Actually, the Animate control can display only those AVI files that have a single
video stream, are uncompressed or compressed with RLE8 compression, and have
no palette changes; and if they have sound, it is ignored. In practice, the files cor-
responding to this requirement are those made of a series of computer bitmaps,
not those based on an actual film.

The Animate control can have two possible sources for its animation:

• It can be based on any AVI file that meets the requirements indicated in the
note above; to use this type of source, set a proper value for the FileName
property.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

41

• It can use a special internal Windows animation, part of the common control
library; to use this type of source, choose one of the possible values of the
CommonAVI property (which is based on an enumeration).

If you simply place an Animate control on a form, choose an animation using
one of the methods just described, and finally, set its Active property to True,
you’ll start seeing the animation performed even at design time. By default, the
animation runs continuously, restarting it as soon as it is done. However, you can
regulate this effect by using the Repetitions property. The default value -1
causes infinite repetition; use any other value to specify a number of repetitions.

You can also specify the initial and final frame of the sequence, with the Start-
Frame and StopFrame properties. These three properties (initial position, final
position, and number of repetitions) correspond to the three parameters of the
Play method, which you’ll often use with an Animate control. As an alternative,
you can set the properties and then call the Start method. At run time, you can
also access the total number of frames using the FrameCount property: you can
use this to execute the animation from the beginning to the end. Finally, for finer
control, you can use the Seek method, which displays a specific frame.

I’ve used all of these methods in a simple demo program, which can use both
files and the Windows standard animations. The program allows you to choose a
file or one of the animations by using a ListBox. I’ve added an item to this ListBox
for each element of the TCommonAVI enumeration and used the same order:

object ListBox1: TListBox
Items.Strings = (
‘[Use an AVI file]’
‘Find Folder’
‘Find File’
‘Find Computer’
‘Copy Files’
‘Copy File’
‘Recycle File’
‘Empty Recycle’
‘Delete File’)

OnClick = ListBox1Click
end

Thanks to this structure, when the user clicks on the ListBox, simply casting the
number of the selected items to the enumerated data type will get the proper
value for the CommonAVI property.

procedure TForm1.ListBox1Click(Sender: TObject);
begin
Animate1.CommonAVI := TCommonAVI (ListBox1.ItemIndex);
if (ListBox1.ItemIndex = 0) and

The Animate Control

http://www.sybex.com

42

OpenDialog1.Execute then
Animate1.FileName := OpenDialog1.FileName

end;

As you can see, when the first item is selected (the value is caNone), the program
automatically loads an AVI file, using an OpenDialog component. The most impor-
tant component of the form is the Animate control. Here is its textual description:

object Animate1: TAnimate
AutoSize = False
Align = alClient
CommonAVI = aviFindFolder
OnOpen = Animate1Open

end

It’s aligned to the client area, so that a user can easily resize it depending on the
actual size of the frames of the animation. As you can see, I’ve also defined a han-
dler for an event of this component, OnOpen:

procedure TForm1.Animate1Open(Sender: TObject);
begin
LblFrames.Caption := ‘Frames ‘ +
IntToStr (Animate1.FrameCount);

end;

When a new file (or common animation) is opened, the program simply out-
puts the number of its frames in a label. This label is hosted together with several
buttons and a few SpinEdit controls into a big panel, acting as a toolbar. You can
see them in the design-time form of Figure 22.12.

F I G U R E 2 2 . 1 2 :

The form of the AnimCtrl
example at design time. The
Animate control is actually
showing an animation, even
before running the program.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

43

The Start and Stop buttons are completely trivial, but the Play Once button has
some simple code:

procedure TForm1.BtnOnceClick(Sender: TObject);
begin
Animate1.Play (0, Animate1.FrameCount, 1);

end;

Things start getting more interesting with the code used to play the animation
three times or to play only a fragment of it. Both of these methods are based on
the Play method:

procedure TForm1.BtnTriceClick(Sender: TObject);
begin
Animate1.Play (0, Animate1.FrameCount, 3);

end;

procedure TForm1.BtnFragmentClick(Sender: TObject);
begin
Animate1.Play (SpinEdit1.Value, SpinEdit2.Value, -1);

end;

The last two button event handlers are based on the Seek method. The Goto
button simply moves to the frame indicated by the corresponding SpinEdit com-
ponent, while the Reverse buttons move to each frame in turn, starting with the
last one and pausing between each of them:

procedure TForm1.BtnGotoClick(Sender: TObject);
begin
Animate1.Seek (SpinEdit3.Value);

end;

procedure TForm1.BtnReverseClick(Sender: TObject);
var
Init: TDateTime;
I: Integer;

begin
for I := Animate1.FrameCount downto 1 do
begin
Animate1.Seek (I);
// wait 50 milliseconds
Init := Now;
while Now < Init + EncodeTime (0, 0, 0, 50) do
Application.ProcessMessages;

end;
end;

The Animate Control

http://www.sybex.com

44

The Animate Control in a Button
Now that you know how the Animate control works, we can use it to build
another animated button. Simply place an Animate control and a large button
(possibly with a large font as well) in a form. Then write the following code
to make the button the parent window of the Animate control at run time and
position it properly:

procedure TForm1.FormCreate(Sender: TObject);
var
hDiff: Integer;

begin
Animate1.Parent := Button1;
hDiff := Button1.Height - Animate1.Height;
Animate1.SetBounds (hDiff div 2, hDiff div 2,
Animate1.Width, Animate1.Height);

Animate1.Active := True;
end;

You can see an example of this effect in Figure 22.13. (The project has the name
AnimBtn.) This is indeed the simplest approach to producing an animated but-
ton, but it also permits the least control.

Graphical Grids
Grids represent another interesting group of Delphi graphical components. The
system offers different grid components: a grid of strings, one of images, data-
base-related grids, and a sample grid of colors. The first two kinds of grids are
particularly useful because they allow you to represent a lot of information and

F I G U R E 2 2 . 1 3 :

The effect of the Animate con-
trol inside a button, as shown
by the AnimBtn program

Chapter 22 • Graphics in Delphi

http://www.sybex.com

45

let the user navigate it. Of course, grids are extremely important in database pro-
gramming, and they can be customized with graphics as we’ve seen in Chapter 10
of Mastering Delphi 5.

The DrawGrid and StringGrid components are closely related. In fact, the
TStringGrid class is a subclass of TDrawGrid. What use are these grids? Basi-
cally, you can store some values, either in the strings related to the StringGrid
or in other data structures, and then display selected values, using specific crite-
ria. While grids of strings can be used almost as they are (because they already
provide editing capabilities), the grids of generic objects usually require more
coding.

Grids, in fact, define the way information is organized for display, not how it is
stored. The only grid that stores the data it displays is the StringGrid. All other
grids (including the DrawGrid and the DBGrid components) are just data view-
ers, not data containers. The DBGrid doesn’t own the data it displays; it fetches
the data from the connected data source. This is sometimes a source of confusion.

The basic structure of a grid includes a number of fixed columns and rows, which
indicate the nonscrollable region of the grid (as you can see in Figure 22.14). Grids
are among the most complex components available in Delphi, as indicated by the
high number of properties and methods they contain. There are a great many options
and properties for grids, controlling both their appearance and their behavior.

In its appearance, the grid can have lines of different sizes, or it can have no
lines. You can set the size of each column or row independently of the others
because the RowSize, ColWidth, and RowHeight properties are arrays. For the grid’s
behavior, you can let the user resize the columns and the rows (goColSizing and
goRowSizing), drag entire columns and rows to a new position (goRowMoving
and goColumnMoving), select automatic editing, and allow range selections.
Because various options allow users to perform a number of operations on grids,

F I G U R E 2 2 . 1 4 :

When you place a new grid
component on a form, it con-
tains one fixed row and one
fixed column by default.

Graphical Grids

http://www.sybex.com

46

there are also a number of events related to grids, such as OnColumnMoved,
OnDrawCell, or OnSetEditText.

The most important event is probably OnDrawCell. In response to this event, a
program has to paint a certain cell of the grid. Only string grids can automatically
display their contents. The DrawGrid, in fact, doesn’t have support for storing data.
It is simply a tool for arranging a portion of the screen to display information in a
regular format. It is a simple tool but also a powerful one. Methods such Cell-
Rect, which returns the rectangle corresponding to the area of a cell, or MouseTo-
Cell, which returns the cell in a specific location, are a joy to use. By handling
resizable rows and columns and scrollable grids, they simplify complex tasks and
spare the programmer from tedious calculations.

What can you use a grid for? Building a spreadsheet is probably the first idea
that comes to mind, but that’s probably a little too complex for an example. I’ve
decided to use the StringGrid control in a program that shows the fonts installed
in the system and the DrawGrid control in a program that emulates the Mine-
Sweeper game.

A Grid of Fonts
If you place a StringGrid component on a form and set its options properly, you
have a full working editor of strings arranged in a grid, without doing any pro-
gramming at all. To make the example more interesting, I’ve decided to draw
each cell of the grid with a different font, varying both its size and its typeface.
You can see the result of the FontGrid program in Figure 22.15.

The form of this program is very simple. You need only place a grid component
on a form, align it with the client area, set a few properties and options, and let
the program do the rest. The number of columns and rows and their size, in fact,

F I G U R E 2 2 . 1 5 :

An example of the output
of the FontGrid application

Chapter 22 • Graphics in Delphi

http://www.sybex.com

47

are computed at run time. The important properties you need to set are Default-
Drawing, which should be False to let us paint the grid as we like, and Options:

object Form1: TForm1
Caption = ‘Font Grid’
OnCreate = FormCreate
object StringGrid1: TStringGrid
Align = alClient
DefaultColWidth = 200
DefaultDrawing = False
Options = [goFixedVertLine, goFixedHorzLine,
goVertLine, goHorzLine, goDrawFocusSelected,
goColSizing, goColMoving, goEditing]

OnDrawCell = StringGrid1DrawCell
end

end

As usually happens in Delphi, the simpler the form is, the more complex the
code. This example follows that rule, although it has only two methods, one to
initialize the grid at start-up and the other to draw the items. The editing, in fact,
has not been customized and takes place using the system font. The first of the
two methods is FormCreate. At the beginning, this method uses the global
Screen object to access the fonts installed in the system.

The grid has a column for each font as well as a fixed column with numbers
representing font sizes. The name of each column is copied from the Screen
object to the first row of each column (which has a zero index):

procedure TForm1.FormCreate(Sender: TObject);
var
I, J: Integer;

begin
{the number of columns equals the number of fonts plus
1 for the first fixed column, which has a size of 20}
StringGrid1.ColCount := Screen.Fonts.Count + 1;
StringGrid1.ColWidths [0] := 50;

for I := 1 to Screen.Fonts.Count do
begin
// write the name of the font in the first row
StringGrid1.Cells [I, 0] :=
Screen.Fonts.Strings [I-1];

{compute maximum required size of column, getting the width
of the text with the biggest size of the font in that column}
StringGrid1.Canvas.Font.Name :=

Graphical Grids

http://www.sybex.com

48

StringGrid1.Cells [I, 0];
StringGrid1.Canvas.Font.Size := 32;
StringGrid1.ColWidths [I] :=
StringGrid1.Canvas.TextWidth (‘AaBbYyZz’);

end;
...

In the last part of the code above, the program computes the width of each col-
umn. This is accomplished by evaluating the space occupied by the custom string
of text AaBbYyZz, using the font of the column (written in the first row, Cells
[I, 0]) and the biggest font size used by the program (32). To compute the space
required by the text, you can apply the TextWidth and TextHeight methods to a
canvas with the proper font selected.

The rows, instead, are always 26 and have an increasing height, computed with
the approximate formula: 15 + I x 2. In fact, computing the highest text means
checking the height of the text in each column, certainly too complex an operation
for this example. The approximate formula works well enough, as you can see in
Figure 22.15 and by running the program. In the first cell of each row, the program
writes the size of the font, which corresponds to the number of the line plus seven.

The last operation is to store the string “AaBbYyZz” in each nonfixed cell of the
grid. To accomplish this, the program uses a nested for loop. Expect to use nested
for loops often when working with grids. Here is the second part of the FormCreate
method:

// defines the number of columns
StringGrid1.RowCount := 26;
for I := 1 to 25 do
begin
// write the number in the first column
StringGrid1.Cells [0, I] := IntToStr (I+7);
// set an increasing height for the rows
StringGrid1.RowHeights [I] := 15 + I*2;
// insert default text in each column
for J := 1 to StringGrid1.ColCount do
StringGrid1.Cells [J, I] := ‘AaBbYyZz’

end;
StringGrid1.RowHeights [0] := 25;

end;

Now we can study the second method, StringGrid1DrawCell, which corre-
sponds to the grid’s OnDrawCell event. This method has a number of parameters:

• Col and Row refer to the cell we are currently painting.

• Rect is the area of the cell we are going to paint.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

49

• State is the state of the cell, a set of three flags, which can be active at the
same time: gdSelected (the cell is selected), gdFocused (the cell has the
input focus), and gdFixed (the cell is in the fixed area, which usually has a
different background color). It is important to know the state of the cell
because this usually affects its output.

The DrawCell method paints the text of the corresponding element of the grid,
with the font used by the column and the size used for the row. Here is the listing
of this method:

procedure TForm1.StringGrid1DrawCell (Sender: TObject;
Col, Row: Integer; Rect: TRect; State: TGridDrawState);

begin
// select a font, depending on the column
if (Col = 0) or (Row = 0) then
StringGrid1.Canvas.Font.Name := I

else
StringGrid1.Canvas.Font.Name :=
StringGrid1.Cells [Col, 0];

// select the size of the font, depending on the row
if Row = 0 then
StringGrid1.Canvas.Font.Size := 14

else
StringGrid1.Canvas.Font.Size := Row + 7;

// select the background color
if gdSelected in State then
StringGrid1.Canvas.Brush.Color := clHighlight

else if gdFixed in State then
StringGrid1.Canvas.Brush.Color := clBtnFace

else
StringGrid1.Canvas.Brush.Color := clWindow;

// output the text
StringGrid1.Canvas.TextRect (
Rect, Rect.Left, Rect.Top,
StringGrid1.Cells [Col, Row]);

// draw the focus
if gdFocused in State then
StringGrid1.Canvas.DrawFocusRect (Rect);

end;

Graphical Grids

http://www.sybex.com

50

The font’s name is retrieved by the row 0 of the same column. The font’s size
is computed by adding 7 to the number of the row. The fixed columns use some
default values. Having set the font and its size, the program selects a color for
the background of the cell, depending on its possible states: selected, fixed, or
normal (that is, no special style). The value of the style’s gdFocused flag is used
a few lines later to draw the typical focus rectangle. When everything is set up,
the program can perform some real output, drawing the text and if necessary the
focus rectangle, with the last two statements of the StringGrid1DrawCell
method above.

TIP To draw the text in the grid’s cell, I’ve used the TextRect method of the canvas
instead of the more common TextOut method. The reason is that TextRect clips
the output to the given rectangle, preventing drawing outside this area. This is par-
ticularly important in the case of grids because the output of a cell should not cross
its borders. Since we are painting on the canvas of the whole grid, when we are
drawing a cell, we can end up corrupting the contents of neighboring cells, too.

As a final observation, remember that when you decide to draw the contents of
a grid’s cell, you should not only draw the default image but also provide a dif-
ferent output for the selected item, properly draw the focus, and so on.

Mines in a Grid
The StringGrid component uses the Cells array to store the values of the ele-
ments and also has an Objects property to store custom data for each cell. The
DrawGrid component, instead, doesn’t have a predefined storage. For this rea-
son, the next example defines a two-dimensional array to store the value of the
grid’s cells—that is, of the playing field.

The Mines example is a clone of the MineSweeper game included with Win-
dows. If you have never played this game, I suggest you try it and read its rules
in the Help file since I’ll give only a basic description. When the program starts, it
displays an empty field (a grid) in which there are some hidden mines. By click-
ing the left mouse button on a cell, you test whether or not there is a mine in that
position. If you find a mine, it explodes, and the game is over. You have lost.

If there is no mine in the cell, the program indicates the number of mines in the
eight cells surrounding it. Knowing the number of mines near the cell, you have a
good hint for the following turn. To help you further on, when a cell has zero
mines in the surrounding area, the number of mines for these cells is automati-
cally displayed, and if one of them has zero surrounding mines, the process is

Chapter 22 • Graphics in Delphi

http://www.sybex.com

51

repeated. So if you are lucky, with a single click you might uncover a good num-
ber of clear cells (see Figure 22.16).

When you think you have found a mine, simply right-click on the cell; this
places a flag there. The program does not say whether your inference is correct;
the flag is only a hint for your future attempts. If you later change your mind, you
can again right-click on the cell to remove the flag. When you have found all of
the mines, you have won, and the game terminates.

Those are the rules of the game. Now we have to implement them, using a Draw-
Grid as starting point. In this example, the grid is fixed and cannot be resized or
modified in any way at run time. In fact, it has square cells of 30 × 30 pixels, which
will be used to display bitmaps of the same size.

The code of this program is complex, and it is not easy to find a starting point
to describe it. For this reason, I’ve added more comments than usual to the source
code (in the download files) so you can browse through it to understand what it
does. Nonetheless, I’ll describe its most important elements. First of all, the pro-
gram’s data is stored in two arrays (declared as private fields of the form):

Display: array [0 .. NItems - 1, 0 .. NItems -1] of Boolean;
Map: array [0 .. NItems - 1, 0 .. NItems -1] of Char;

The first is an array of Boolean values that indicate whether an item should be
displayed or remain hidden. Notice that the number of rows and columns of this

F I G U R E 2 2 . 1 6 :

The Mines program after a
single lucky click. A group
of cells with no mines is
displayed at once.

Graphical Grids

http://www.sybex.com

52

array is NItems. You can freely change this constant, but you should resize the
grid accordingly. The second array, Map, holds the positions of the mines and flags
and the numbers of the surrounding mines. It uses character codes instead of a
proper enumeration data type, in order to use the digits 0–8 to indicate the num-
ber of mines around the cell. Here is a list of the codes:

• M: Mine indicates the position of a mine that the user still has not found.

• K: Known mine indicates the position of a mine already found by the user
and having a flag.

• W: Wrong mine indicates a position where the user has set a flag but where
there is no mine.

• 0 to 8: Number of mines indicates the number of mines in the surrounding cells.

The first method to explore is FormCreate, executed at start-up. This method
initializes a number of fields of the form class, fills the two arrays with default
values (using two nested for loops), and then sets the mines in the grid. For the
number of times defined in a constant (that is, the number of mines), the program
adds a new mine in a random position. However, if there was already a mine, the
loop should be executed once more because the final number of mines in the Map
array should equal the requested number. Otherwise the program will never ter-
minate, because it tests when the number of mines found equals the number of
mines added to the grid. Here is the code of the loop; it can be executed more
than NMines times, thanks to the use of the MinesToPlace integer variable, which
is increased when we try to place a mine over an existing one:

Randomize;
// place ‘NMines’ non-overlapping mines
MinesToPlace := NMines;
while MinesToPlace > 0 do
begin
X := Random (NItems);
Y := Random (NItems);
// if there isn’t a mine
if Map [X, Y] <> ‘M’ then
begin
// add a mine
Map [X, Y] := ‘M’;
Dec (MinesToPlace)

end;
end;

Chapter 22 • Graphics in Delphi

http://www.sybex.com

53

The last portion of the initialization code computes the number of surrounding
mines for each cell that doesn’t have a mine. This is accomplished by calling the
ComputeMines procedure for each cell. The code of this function is fairly complex
because it has to consider the special cases of the mines near a border of the grid.
The effect of this call is to store, in the Map array, the character representing the
number of mines surrounding each cell.

The next logical procedure is DrawGrid1MouseDown. This method first computes
the cell on which the mouse has been clicked, with a call to the grid’s MouseToCell
method. Then there are three alternative portions of code: a small one when the
game has ended, and the other two for the two mouse buttons. When the left mouse
button is pressed, the program checks whether there is a mine (hidden or not), and if
there is, it displays a message and terminates the program with an explosion (see
Figure 22.17).

If there is no mine, the program sets the Display value for the cell to True, and
if there is a 0, it starts the FloodZeros procedure. This method displays the eight
items near a visible cell having a value of 0, repeating the operation over and over
if one of the surrounding cells also has a value of 0. This recursive call is complex
because you have to provide a way to terminate it. If there are two cells near each
other, both having a value of 0, each one is in the surrounding area of the other, so
they might continue forever to ask the other cell to display itself and its surround-
ing cells. Again, the code is complex, and the best way to study it may be to step
through it in the debugger.

F I G U R E 2 2 . 1 7 :

Ouch! You have stepped on
a mine.

Graphical Grids

http://www.sybex.com

54

When the user presses the right mouse button, the program changes the status
of the cell. The right mouse button action is to toggle the flag on the screen, so a
user can always remove an existing flag, if he or she thinks the earlier decision was
wrong. For this reason the status of a cell that contains a mine can change from M
(hidden Mine) to K (Known mine) and vice versa; and the status of a cell with no
mine can change from a number to W (Wrong mine) and vice versa. When all the
mines have been found, the program terminates with a congratulation message.

A very important piece of code is at the end of the OnMouseDown event response
method. Each time the user clicks on a cell and its contents change, that cell
should be repainted. If you repaint the whole grid, the program will be slower.
For this reason, I’ve used the Windows API function InvalidateRect:

MyRect := DrawGrid1.CellRect (Col, Row);
InvalidateRect (DrawGrid1.Handle, @MyRect, False);

The last important method is DrawGrid1DrawCell. We already used this paint-
ing procedure in the last example, so you should remember that it is called for
each cell that needs repainting. Fundamentally, this method extracts the code cor-
responding to the cell, which shows a corresponding bitmap, loaded from a file.
Once again, I’ve prepared a bitmap for each of the images in a new resource file,
which is included in the project thanks to Delphi 5’s improved Project Manager.

Recall that when using resources, the code tends to be faster than when using
separate files, and again, we end up with a single executable file to distribute. The
bitmaps have names corresponding to the code in the grid, with a character (‘M’)
in front since the name ’0’ would have been invalid. The bitmaps can be loaded
and drawn in the cell with this code:

Bmp.LoadFromResourceName (HInstance, ‘M’ + Code);
DrawGrid1.Canvas.Draw (Rect.Left, Rect.Top, Bmp);

Of course, this takes place only if the cell is visible—that is, if Display is True.
Otherwise, a default undefined bitmap is displayed. (The bitmap name is ‘UNDEF’.)
Loading the bitmaps from the resources each time seems slow, so the program could
have stored all the bitmaps in a list in memory, as the World2 example earlier in this
chapter did. However, this time, I decided to use a different, although slightly less
efficient, approach: a cache. This makes sense because we already use resources
instead of files to speed up things.

The bitmap cache of Mines is small since it has just one element, but its pres-
ence speeds up the program considerably. The program stores the last bitmap it
has used and its code; then, each time it has to draw a new item, if the code is the
same, it uses the cached bitmap. Here is the new version of the code above:

if not (Code = LastBmp) then

Chapter 22 • Graphics in Delphi

http://www.sybex.com

55

begin
Bmp.LoadFromResourceName (HInstance, ‘M’ + Code);
LastBmp := Code;

end;
DrawGrid1.Canvas.Draw (Rect.Left, Rect.Top, Bmp);

Increasing the size of this cache will certainly improve its speed. You can con-
sider a list of bitmaps as a big cache, but this is probably useless because some
bitmaps (those with high numbers) are seldom used. As you can see, some
improvements can be made to speed up the program, and much can also be done
to improve its user interface. If you have understood this version of the program,
I think you’ll be able to improve it considerably.

Using TeeChart
TeeChart is a VCL-based charting component built by David Berneda and licensed
to Borland for inclusion in the Developer and Client/Server versions of Delphi. The
TeeChart component is very complex: Delphi includes a Help file and other refer-
ence material for this component, so I won’t spend time listing all of its features. I’ll
just build a couple of examples. TeeChart comes in three versions: the stand-alone
component (in the Additional page of the Component Palette), the data-aware ver-
sion (in the Data Controls page), and the Report version (in the QuickReport page).
Delphi Client/Server also includes a DecisionChart control in the Decision Cube
page of the palette. The data-aware version of TeeChart is presented in Chapter 9 of
Mastering Delphi 5, and I’ll use it again later in a Web-oriented example.

NOTE Of course, it would be simpler to build an example using the TeeChart Wizard, but
seeing all the steps will give you a better understanding of this component’s structure.

The TeeChart component provides the basic structure for charting, through a
complex framework of charting and series classes and the visual container for
charts (the actual control). The actual charts are objects of class TChartSeries or
derived classes. Once you’ve placed the TeeChart component on a form, you
should create one or more series. To accomplish this, you can open the Chart
Component Editor: select the component, right-click to show the local menu of
the form designer, and choose the Edit Chart command. Now press the Add but-
ton, and choose the graph (or series) you want to add from the many available (as
you can see in Figure 22.18).

Using TeeChart

http://www.sybex.com

56

As soon as you create a new series, a new object of a TChartSeries subclass
is added to your form. This is the same behavior as the MainMenu component,
which adds objects of the TMenuItem class to the form. You can then edit the
properties of the TSeries object in the Chart Component Editor, or you can select
the TChartSeries object in the Object Inspector (with the Object Selector combo
box) and edit its many properties.

The different TChartSeries subclasses—that is, the different kinds of graph—
have different properties and methods (although some of them are common to
more than one subclass). Keep in mind that a graph can have multiple series: if
they are all of the same type they will probably integrate better, as in the case of
multiple bars. Anyway, you can also have a complex layout with graphs of differ-
ent types visible at the same time. At times, this is an extremely powerful option.

Building a First Example
To build this example I placed a TeeChart component in a form and then simply
added four 3D Bar series—that is, four objects of the TBarSeries class. Then I set
up some global properties, such as the title of the chart, and so on. Here is a sum-
mary of this information, taken from the textual description of the form:

object Chart1: TChart
AnimatedZoom = True
Title.Text.Strings = (
‘Simple TeeChart Demo for Mastering Delphi’)

BevelOuter = bvLowered

F I G U R E 2 2 . 1 8 :

The TeeChart Gallery allows
you to choose the type of
graph, or series.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

57

object Series1: TBarSeries
SeriesColor = clRed
Marks.Visible = False

end
object Series2: TBarSeries
SeriesColor = clGreen
Marks.Visible = False

end
object Series3: TBarSeries
SeriesColor = clYellow
Marks.Visible = False

end
object Series4: TBarSeries
SeriesColor = clBlue
Marks.Visible = False

end
end

Next I added to the form a string grid and a push button labeled Update. This
button is used to copy the numeric values of the string grid to the chart. The grid
is based on a 5 × 4 matrix as well as a line and a column for the titles. Here is its
textual description:

object StringGrid1: TStringGrid
ColCount = 6
DefaultColWidth = 50
Options = [goFixedVertLine, goFixedHorzLine,
goVertLine, goHorzLine, goEditing]

ScrollBars = ssNone
OnGetEditMask = StringGrid1GetEditMask

end

The value 5 for the RowCount property is a default, and it doesn’t show up in
the textual description. (The same holds for the value of 1 for the FixedCols and
FixedRows properties.) An important element of this string grid is the edit mask
used by all of its cells. This is set using the OnGetEditMask event:

procedure TForm1.StringGrid1GetEditMask(Sender: TObject;
ACol, ARow: Longint; var Value: string);

begin
// edit mask for the grid cells
Value := ‘09;0’;

end;

There is actually one more component, a check box used to toggle the visibility
of the marks of the series. (The marks are small yellow tags describing each value;
you’ll need to run the program to see them.) You can see the form at design time

Using TeeChart

http://www.sybex.com

58

in Figure 22.19. In this case the series are populated with random values; this is a
nice feature of the component, as it allows you to preview the output without
entering real data.

Adding Data to the Chart
Now we simply initialize the data of the string grid and copy it to the series of
the chart. This takes place in the handler of the OnCreate event of the form. This
method fills the fixed items of the grid and the series names, then fills the data
portion of the string grid, and finally calls the handler of the OnClick event of
the Update button, to update the chart:

procedure TForm1.FormCreate(Sender: TObject);
var
I, J: Integer;

begin
with StringGrid1 do
begin
{fills the fixed column and row,
and the chart series names}
for I := 1 to 5 do
Cells [I, 0] := Format (‘Group%d’, [I]);

F I G U R E 2 2 . 1 9 :

The Graph1 example, based
on the TeeChart component,
at design time.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

59

for J := 1 to 4 do
begin
Cells [0, J] := Format (‘Series%d’, [J]);
Chart1.Series [J-1].Title := Format (‘Series%d’, [J]);

end;

// fills the grid with random values
Randomize;
for I := 1 to 5 do
for J := 1 to 4 do
Cells [I, J] := IntToStr (Random (100));

end; // with

// update the chart
UpdateButtonClick (Self);

end;

We can access the series using the component name (as Series1) or using the
Series array property of the chart, as in Chart1.Series[J-1]. In this expres-
sion, notice that the actual data in the string grid starts at row and column one—
the first line and column, indicated by the zero index, are used for the fixed
elements—while the chart Series array is zero-based.

Another example of updating each series is present in the OnClick event han-
dler for the check box; this method toggles the visibility of the marks:

procedure TForm1.ChBoxMarksClick(Sender: TObject);
var
I: Integer;

begin
for I := 1 to 4 do
Chart1.Series [I-1].Marks.Visible :=
ChBoxMarks.Checked;

end;

But the really interesting code is in the UpdateButtonClick method, which
updates the chart. To accomplish this, the program first removes the existing data
of each chart, and then it adds new data (or data points, to use a jargon term):

procedure TForm1.UpdateButtonClick(Sender: TObject);
var
I, J: Integer;

begin
for I := 1 to 4 do
begin
Chart1.Series [I-1].Clear;
for J := 1 to 5 do

Using TeeChart

http://www.sybex.com

60

Chart1.Series [I-1].Add (
StrToInt (StringGrid1.Cells [J, I]),
‘’, Chart1.Series [I-1].SeriesColor);

end;
end;

The parameters of the Add method (used when you don’t want to specify an
X value, but only an Y value) are the actual value, the label, and the color. In this
example the label is not used, so I’ve simply omitted it. I could have used the
default value, clTeeColor, to get the proper color of the series. You might use
specific colors to indicate different ranges of data.

Once you’ve built the graph, TeeChart allows you a lot of viewing options. You
can easily zoom into the view (simply indicate the area with the left mouse button),
zoom out (using the mouse in the opposite way, dragging towards the top left cor-
ner), and use the right mouse button to pan the view. You can see an example of
zooming in Figure 22.20.

Creating Series Dynamically
The Graph1 example shows some of the capabilities of the TeeChart component,
but it is based on a single, fixed type of graph. I could have improved it by allowing

F I G U R E 2 2 . 2 0 :

The form of the Graph1
example at run time. Notice
that I’ve zoomed into the
graph.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

61

some customization of the shape of the vertical bars; instead I chose a more general
approach, allowing the user to choose different kinds of series (graphs).

The TeeChart component initially has the same attributes as in the previous
example. But the form now has four combo boxes, one for each row of the string
grid. Each combo box has four values (Line, Bar, Area, and Point), corresponding
to the four types of series I want to handle. To handle these combo boxes in a
more flexible way in the code, I’ve added an array of these controls to the private
fields of the form:

private
Combos: array [0..3] of TComboBox;

This array is filled with the actual component in the FormCreate method, which
also selects the initial item of each of them. Here is the new code of FormCreate:

// fill the Combos array
Combos [0] := ComboBox1;
Combos [1] := ComboBox2;
Combos [2] := ComboBox3;
Combos [3] := ComboBox4;
// show the initial chart type
for I := 0 to 3 do
Combos [I].ItemIndex := 1;

TIP This example demonstrates a common way to create an array of controls in Delphi,
something Visual Basic programmers often long for. Actually Delphi is so flexible
that arrays of controls are not built-in; you can create them as you like. This
approach relies on the fact that you can generally associate the same event han-
dler with different events, something that VB doesn’t allow you to do.

All these combo boxes share the same OnClick event handler, which destroys
each of the current series of the chart, creates the new ones as requested, and then
updates their properties and data:

procedure TForm1.ComboChange(Sender: TObject);
var
I: Integer;
SeriesClass: TChartSeriesClass;
NewSeries: TChartSeries;

begin
// destroy the existing series (in reverse order)
for I := 3 downto 0 do
Chart1.Series [I].Free;

// create the new series
for I := 0 to 3 do

Using TeeChart

http://www.sybex.com

62

begin
case Combos [I].ItemIndex of
0: SeriesClass := TLineSeries;
1: SeriesClass := TBarSeries;
2: SeriesClass := TAreaSeries;

else // 3: and default
SeriesClass := TPointSeries;

end;
NewSeries := SeriesClass.Create (self);
NewSeries.ParentChart := Chart1;
NewSeries.Title :=
Format (‘Series %d’, [I + 1]);

end;
// update the marks and update the data
ChBoxMarksClick (self);
UpdateButtonClick (self);
Modified := True;

end;

The central part of this code is the case statement, which stores a new class in
the SeriesClass class reference variable, used to create the new series objects
and set each one’s ParentChart and Title. I could have also used a call to the
AddSeries method of the chart in each case branch and then set the Title with
another for loop. In fact, a call such as

Chart1.AddSeries (TBarSeries.Create (self));

creates the series objects and sets its parent chart at the same time.

Notice that this new version of the program allows you to change the type of
graph for each series independently. You can see an example of the resulting
effect in Figure 22.21.

Finally, the Graph2 example has support for saving the current data it is display-
ing on a file and loads existing files. The program has a Modified Boolean variable,
used to track whether the user has changed any of the data, and it prompts the user
to confirm closing the form when the data has changed. The file support is based
on streams and is not particularly complex, because the number of elements to save
is fixed (all the files have the same size). Here are the two methods connected with
the Open and Save menu items:

procedure TForm1.Open1Click(Sender: TObject);
var
LoadStream: TFileStream;
I, J, Value: Integer;

begin
if OpenDialog1.Execute then

Chapter 22 • Graphics in Delphi

http://www.sybex.com

63

begin
CurrentFile := OpenDialog1.Filename;
Caption := ‘Graph [‘ + CurrentFile + ‘]’;
// load from the current file
LoadStream := TFileStream.Create (
CurrentFile, fmOpenRead);

try
// read the value of each grid element
for I := 1 to 5 do
for J := 1 to 4 do
begin

LoadStream.Read (Value, sizeof (Integer));
StringGrid1.Cells [I, J] := IntToStr(Value);

end;
// load the status of the checkbox and the combo boxes
LoadStream.Read (Value, sizeof (Integer));
ChBoxMarks.Checked := Boolean(Value);
for I := 0 to 3 do
begin
LoadStream.Read (Value, sizeof (Integer));
Combos [I].ItemIndex := Value;

end;
finally

F I G U R E 2 2 . 2 1 :

Various kinds of graphs, or
chart series, displayed by
the Graph2 example

Using TeeChart

http://www.sybex.com

64

LoadStream.Free;
end;
// fire udpate events
ChBoxMarksClick (Self);
ComboChange (Self);
UpdateButtonClick (Self);
Modified := False;

end;
end;

procedure TForm1.Save1Click(Sender: TObject);
var
SaveStream: TFileStream;
I, J, Value: Integer;

begin
if Modified then
if CurrentFile = ‘’ then // call save as
SaveAs1Click (Self)

else
begin
// save to the current file
SaveStream := TFileStream.Create (
CurrentFile, fmOpenWrite or fmCreate);

try
// write the value of each grid element
for I := 1 to 5 do

for J := 1 to 4 do
begin
Value := StrToIntDef (Trim (
StringGrid1.Cells [I, J]), 0);

SaveStream.Write (Value, sizeof (Integer));
end;

// save check box and combo boxes
Value := Integer (ChBoxMarks.Checked);
SaveStream.Write (Value, sizeof (Integer));
for I := 0 to 3 do
begin

Value := Combos [I].ItemIndex;
SaveStream.Write (Value, sizeof (Integer));

end;
Modified := False;

finally
SaveStream.Free;

end;
end;

end;

Chapter 22 • Graphics in Delphi

http://www.sybex.com

65

A Database Chart on the Web
In Chapter 20 of Mastering Delphi 5, we saw how to create a simple graphic image
and return it from a CGI application. We can apply the same approach in returning a
complex and dynamic graph built with the TDBChart component. Using this com-
ponent in memory is a little more complex than setting all of its properties at design
time, as you’ll have to set the properties in the Pascal code. (You cannot use a visual
component, such as a DBChart, in a Web Module or any other data module).

In the WebChart ISAPI application I’ve used the Country.DB table to produce a
pie chart with the area and population of the American countries, as in the ChartDb
example of Chapter 9 in Mastering Delphi 5. The two graphs are generated by two
different actions, indicated by the paths /population and /area. As most of the
code is used more than once, I’ve collected it in the OnCreate and OnAfterDispatch
events of the WebModule.

WARNING As written, this program doesn’t support concurrent users. You’ll need to add
some threading or synchronization code to this ISAPI DLL to make it work with
multiple users at the same time. An alternative is to place all the code in the
Action event handlers, so that no global object is shared among multiple requests.
Or you can turn it into a CGI application.

The data module has a table object, which is properly initialized at design time,
and three private fields:

private
Chart: TDBChart;
Series: TPieSeries;
Image: TImage;

The objects corresponding to these fields are created along with the Web module
(and used by subsequent calls):

procedure TWebModule1.WebModule1Create(Sender: TObject);
begin
// open the database table
Table1.Open;
// create the chart
Chart := TDBChart.Create (nil);
Chart.Width := 600;
Chart.Height := 400;
Chart.AxisVisible := False;
Chart.Legend.Visible := False;
Chart.BottomAxis.Title.Caption := ‘Name’;

Using TeeChart

http://www.sybex.com

66

// create the pie series
Series := TPieSeries.Create (Chart);
Series.ParentChart := Chart;
Series.DataSource := Table1;
Series.XLabelsSource := ‘Name’;
Series.OtherSlice.Style := poBelowPercent;
Series.OtherSlice.Text := ‘Others’;
Series.OtherSlice.Value := 2;
Chart.AddSeries (Series);
// create the memory bitmap
Image := TImage.Create (nil);
Image.Width := Chart.Width;
Image.Height := Chart.Height;

end;

The next step is to execute the handler of the specific action, which sets the pie
chart series to the specific data field and updates a few captions:

procedure TWebModule1.WebModule1ActionPopulationAction(
Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
// set specific values
Chart.Title.Text.Clear;
Chart.Title.Text.Add (‘Population of Countries’);
Chart.LeftAxis.Title.Caption := ‘Population’;
Series.Title := ‘Population’;
Series.PieValues.ValueSource := ‘Population’;

end;

This creates the proper DBChart in memory. The final step, again common to
the two actions, is to save the chart in a bitmap image, and then format it as a
JPEG on a stream, to be later returned from the server-side application. The code
is actually similar to that of the previous example:

procedure TWebModule1.WebModule1AfterDispatch(
Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

var
Jpeg: TJpegImage;
MemStr: TMemoryStream;

begin
// paint the chart on the memory bitmap
Chart.Draw (Image.Canvas, Image.BoundsRect);
// create the jpeg and copy the image to it
Jpeg := TJpegImage.Create;
try

Chapter 22 • Graphics in Delphi

http://www.sybex.com

67

Jpeg.Assign (Image.Picture.Bitmap);
MemStr := TMemoryStream.Create;
// save to a stream and return it
Jpeg.SaveToStream (MemStr);
MemStr.Position := 0;
Response.ContentType := ‘image/jpeg’;
Response.ContentStream := MemStr;
Response.SendResponse;

finally
Jpeg.Free;

end;
end;

The result, visible in Figure 22.22, is certainly interesting. Optionally, you can
extend this application by hooking it to an HTML table showing the database
data. Simply write a program with a main action returning the HTML table and a
reference to the embedded graphics, which will be returned by a second activa-
tion of the ISAPI DLL with a different path.

F I G U R E 2 2 . 2 2 :

The JPEG with the popula-
tion chart generated by the
WebChart application

Using TeeChart

http://www.sybex.com

68

Using Metafiles
The bitmap formats covered earlier in this chapter store the status of each pixel
of a bitmap, although they usually compress the information. A totally different
type of graphic format is represented by vector-oriented formats. In this case the
file stores the information required to re-create the picture, such as the initial and
final point of each line or the mathematics that define a curve. There are many
different vector-oriented file formats, but the only one supported by the Windows
operating system is the Windows Metafile Format (WMF). This format has been
extended in Win32 into the Extended Metafile Format (EMF), which stores extra
information related to the mapping modes and the coordinate system.

A Windows metafile is basically a series of calls to the GDI primitive functions.
After you’ve stored the sequence of calls, you can replay them, reproducing the
graphics. Delphi supports Windows metafiles through the TMetafile and
TMetaFileCanvas classes, so it’s very simple to build an example.

The TMetafile class is used to handle the file itself, with methods for loading
and saving the files, and properties determining the key features of the file. One
of them is the Enhanced property, which determines the type of metafile format.
Note that when Windows is reading a file, the Enhanced property is set depend-
ing on the file extension—WMF for Windows 3.1 metafiles and EMF for the
Win32 enhanced metafiles.

To generate a metafile, you can use an object of the TMetafileCanvas class,
connected to the file through its constructors, as shown by the following code
fragment:

Wmf := TMetafile.Create;
WmfCanvas := TMetafileCanvas.CreateWithComment(
Wmf, 0, ‘Marco’, ‘Demo metafile’);

Once you’ve created the two objects, you can paint over the canvas object with
regular calls and, at the end, save the connected metafile to a physical file.

Once you have the metafile (either a brand-new one you’ve just created or one
you’ve built with another program) you can show it in an Image component, or
you can simply call the Draw or StretchDraw methods of any canvas.

In the WmfDemo example I’ve written some simple code, just to show you
the basics of this approach. The OnCreate event handler of the form creates the
enhanced metafile, a single object that is used both for reading and writing
operations:

procedure TForm1.FormCreate(Sender: TObject);
begin

Chapter 22 • Graphics in Delphi

http://www.sybex.com

69

Wmf := TMetafile.Create;
Wmf.Enhanced := True;
Randomize;

end;

The form of the program has two buttons and the PaintBox components, plus a
check box. The first button creates a metafile by generating a series of partially ran-
dom lines. The result is both shown in the first PaintBox and saved to a fixed file:

procedure TForm1.BtnCreateClick(Sender: TObject);
var
WmfCanvas: TMetafileCanvas;
X, Y: Integer;

begin
// create the virtual canvas
WmfCanvas := TMetafileCanvas.CreateWithComment(
Wmf, 0, ‘Marco’, ‘Demo metafile’);

try
// clear the background
WmfCanvas.Brush.Color := clWhite;
WmfCanvas.FillRect (WmfCanvas.ClipRect);

// draws 400 lines
for X := 1 to 20 do
for Y := 1 to 20 do
begin
WmfCanvas.MoveTo (15 * (X + Random (3)), 15 * (Y + Random (3)));
WmfCanvas.LineTo (45 * Y, 45 * X);

end;
finally
// end the drawing operation
WmfCanvas.Free;

end;

// show the current drawing and save it
PaintBox1.Canvas.Draw (0, 0, Wmf);
Wmf.SaveToFile (ExtractFilePath (
Application.ExeName) + ‘test.emf’);

end;

WARNING If you draw or save the metafile before the connected metafile canvas is closed or
destroyed, these operations will produce no effect at all! This is the reason I call
the Free method before calling Draw and SaveToFile.

Using Metafiles

http://www.sybex.com

70

Reloading and repainting the metafile is even simpler:

procedure TForm1.BtnLoadClick(Sender: TObject);
begin
// load the metafile
Wmf.LoadFromFile (ExtractFilePath (
Application.ExeName) + ‘test.emf’);

// draw or stretch it
if cbStretched.Checked then
PaintBox2.Canvas.StretchDraw (PaintBox2.Canvas.ClipRect, Wmf)

else
PaintBox2.Canvas.Draw (0, 0, Wmf);

end;

Notice that you can reproduce exactly the same drawing but also modify it
with the StretchDraw call. (The result of this operation is visible in Figure 22.23.)
This operation is different from stretching a bitmap, which usually degrades or
modifies the image, because here we are scaling by changing the coordinate map-
ping. This means that while printing a metafile, you can enlarge it to fill an entire
page with a rather good effect, something very hard to do with a bitmap.

F I G U R E 2 2 . 2 3 :

The output of the WmfDemo
with a stretched metafile.

Chapter 22 • Graphics in Delphi

http://www.sybex.com

71

Rotating Text
In this chapter, we’ve covered a lot different examples of the use of bitmaps, and
we’ve created graphics of many types. However, the most important type of
graphics we usually deal with in Delphi applications is text. In fact, even when
showing a label or the text of an Edit box, Windows still paints it in the same was
as any other graphical element. I’ve actually presented an example of font paint-
ing earlier in this chapter in the FontGrid example. Now I’m getting back to this
topic with a slightly more unusual approach.

When you paint text in Windows, there is no way to indicate the direction of the
font: Windows seems to draw the text only horizontally. However, to be precise,
Windows draws the text in the direction supported by its font, which is horizontal
by default. For example, we can change the text displayed by the components on a
form by modifying the font of the form itself, as I’ve done in the SideText example.
Actually you cannot modify a font, but you can create a new one similar to an exist-
ing font:

procedure TForm1.FormCreate(Sender: TObject);
var
ALogFont: TLogFont;
hFont: THandle;

begin
ALogFont.lfHeight := Font.Height;
ALogFont.lfWidth := 0;
ALogFont.lfEscapement := -450;
ALogFont.lfOrientation := -450;
ALogFont.lfWeight := fw_DemiBold;
ALogFont.lfItalic := 0; // false
ALogFont.lfUnderline := 0; // false
ALogFont.lfStrikeOut := 0; // false
ALogFont.lfCharSet := Ansi_CharSet;
ALogFont.lfOutPrecision := Out_Default_Precis;
ALogFont.lfClipPrecision := Clip_Default_Precis;
ALogFont.lfQuality := Default_Quality;
ALogFont.lfPitchAndFamily := Default_Pitch;
StrCopy (ALogFont.lfFaceName, PChar (Font.Name));
hFont := CreateFontIndirect (ALogFont);
Font.Handle := hFont;

end;

This code produced the desired effect on the label of the example’s form, but if
you add other components to it, the text will generally be printed outside the visi-
ble portion of the component. In other words, you’ll need to provide this type of
support within components, if you want everything to show up properly. For

Rotating Text

http://www.sybex.com

72

labels, however, you can avoid writing a new component; instead, simply change
the font associated with the form’s Canvas (not the entire form) and use the stan-
dard text drawing methods. The SideText example changes the font of the Canvas
in the OnPaint method, which is similar to OnCreate:

procedure TForm1.FormPaint(Sender: TObject);
var
ALogFont: TLogFont;
hFont: THandle;

begin
ALogFont.lfHeight := Font.Height;
ALogFont.lfEscapement := 900;
ALogFont.lfOrientation := 900;
...
hFont := CreateFontIndirect (ALogFont);
Canvas.Font.Handle := hFont;
Canvas.TextOut (0, ClientHeight, ‘Hello’);

end;

The font orientation is modified also by a third event handler, associated with a
timer. Its effect is to rotate the form over time, and its code is very similar to the
procedure above, with the exception of the code to determine the font escapement
(the angle of the font rotation):

ALogFont.lfEscapement := - (GetTickCount div 10) mod 3600;

With these three different font rotating techniques (label caption, painted text,
text rotating over time) the form of the SideText program at runtime looks like
Figure 22.24.

.

F I G U R E 2 2 . 2 4 :

The effects of the SideText
example, with some text
actually rotating

Chapter 22 • Graphics in Delphi

http://www.sybex.com

73

Where Do You Go from Here?
In this chapter, we have explored a number of different techniques you can use in
Delphi to produce graphical output. We’ve used the Canvas of the form, bitmaps,
metafiles, graphical components, grids, and other techniques. There are certainly
many more techniques related with graphics programming in Delphi and in Win-
dows in general, including the large area of high-speed games programming.

Allowing you to hook directly with the Windows API, Delphi support for
graphics is certainly extensive. However, most Delphi programmers never make
direct calls to the GDI system but rely instead on the support offered by existing
Delphi components. This topic was introduced in Chapter 13 of Mastering Delphi 5.

If you’ve already read Mastering Delphi 5, I hope you’ve also enjoyed this extra
bonus chapter. If you’ve started by this chapter, the rest of the book has plenty to
offer, even in the context of graphics but certainly not only limited to that. Refer
to www.sybex.com and www.marcocantu.com for more information about the
book and to download the free source code of this chapter and of the entire book.

Where Do You Go from Here?

http://www.sybex.com

	Drawing on a Form
	The Drawing Tools
	Colors

	Drawing Shapes
	Printing Shapes

	Delphi Graphical Components
	Drawing in a Bitmap
	Drawing Shapes
	An Image Viewer
	Scrolling an Image
	Bitmaps to the Max

	An Animated Bitmap in a Button
	A Two-State Button
	Many Images in a Bitmap
	The Rotating World
	A List of Bitmaps, the Use of Resources, and a ControlCanvas

	The Animate Control
	The Animate Control in a Button

	Graphical Grids
	A Grid of Fonts
	Mines in a Grid

	Using TeeChart
	Building a First Example
	Adding Data to the Chart
	Creating Series Dynamically
	A Database Chart on the Web

	Using Metafiles
	Rotating Text
	Where Do You Go from Here?

	Copyright ©1999 SYBEX, Inc:
	, Alameda, CA:
	 www:
	sybex:
	com: Copyright ©1999 SYBEX, Inc., Alameda, CA. www.sybex.com

	url:

